UNIVERSIDAD PRIVADA DE TRUJILLO

CARRERA PROFESIONAL DE INGENIERIA CIVIL

MEJORAMIENTO Y REHABILITACION DE CAMINO VECINAL DE CASERIOS DEL DISTRITO DE AGALLPAMPA, PROVINCIA DE OTUZCO, REGION LA LIBERTAD 2019

TESIS:

PARA OPTAR EL TITULO PROFESIONAL DE INGENIERO CIVIL

AUTOR:

Bach. BONIFACIO MAMANI MAMANI
Bach. JOHN FRANCISCO FLORES GALLEGOS

ASESOR:

ING. ENRIQUE MANUEL DURAND BAZAN

TRUJILLO – PERÚ 2020

HOJA DE FIRMAS

Mejoramiento y Rehabilitación de Camino Vecinal de Caseríos del Distrito de Agallpampa, Provincia de Otuzco, Región la Libertad 2019

Autores:	
Bachiller Bonifacio Mamani Mamani Bachiller John Francisco Flores Gallegos	
Ing. Enrique Durand Bazán	
PRESIDENTE	
Ing. Guido Marín Cubas	
SECRETARIO	
Ing. Elton Javier Galarreta Malaver VOCAL	

BACH. MAMANI MAMANI BONIFACIO
BACH. FLORES GALLEGOS JOHN FRANCISCO

INDICE DE CONTENIDOS

DEDICATORIA7
AGRADECIMIENTO8
RESUMEN9
ABSTRACT10
I. INTRODUCCION11
1.1. Realidad Problemática11
1.2. Formulación del problema
1.3. Justificacion del tema
1.4. Objetivos
1.4.1. Objetivo General
1.4.2. Objetivos Específicos
1.5. Antecedentes
1.6. Bases teóricas
1.6.1. Mejoramiento de caminos
1.6.2. Rehabilitación de caminos
1.6.3. Generalidad del diseño geométrico
1.6.4. Clasificación de las carreteras según su demanda
1.6.5. Clasificación según condiciones orografías
1.6.6. Parámetros básicos para el diseño20
1.6.7. Estudio de la demanda de transito
1.6.8. Elementos de Diseño Geométrico
1.6.9. Pendiente
1.7. Definición de términos básicos

1.8. Formulación de hipótesis	. 24
II. MATERIAL Y METODOS	25
2.1. Material	. 25
2.2. Materiales De Estudio	. 26
2.2.1. Población y muestra	. 26
2.3. Tecnicas, procedimientos e instrumentos	. 28
2.3.1. Para recolectar datos	. 28
2.3.2. Para procesar datos.	. 29
2.3.3. Operacionalizacion de variables	
3.1. Topografía	. 32
3.2. Estudio de tráfico vehicular	. 39
3.3. Estudio de mecánica de suelos	. 45
3.4. Estudio hidrológico	. 54
3.5. Estudio ambiental	
V. CONCLUSIONES	. 62
VI.RECOMENDACIONES	. 64
REFERENCIAS BIBLIOGRÁFICAS	. 65

INDICE DE TABLAS

TABLA N° 01 Clasificacion de carreteras	19
TABLA N° 02 Pendientes máximos	22
TABLA N° 03 Presupuesto de materiales	25
TABLA N° 04 Presupuesto de recursos humanos	25
TABLA N° 05 Presupuesto de servicios	25
TABLA N° 06 Resumen de presupuesto	26
TABLA N° 07 Operacionalizaion de variables	30
TABLA N° 08 Ubicaión politica	32
TABLA N° 09 Tramos intervenidos	32
TABLA N° 10 Accesibilidad y condicines de caminos	33
TABLA N° 11 Puntos topograficos	35
TABLA N° 12 Control tráfico	41
TABLA N° 13 Indice medio diario anual	41
TABLA N° 14 Análisis de demanda actual	
TABLA N° 15 Proyeccion de la demanda	42
TABLA N° 16 Indice medio diario anual E2	
TABLA N° 17 Indice medio diario anual E3	43
TABLA N° 18 Indice medio diario anualizado	44
TABLA N° 19 Número de calicatas	46
TABLA N° 20 Propiedades físicas y mecánicas de suelo	48
TABLA N° 21 Análisis químicos de espectometría	48
TABLA N° 22 Sistema unificado de clasificación de suelos	49
TABLA N° 23 Indice de consistencia	50
TABLA N° 24 Zonas de mejoramiento	51
TABLA N° 25 Muros de contención a proyectar	52
TABLA N° 26 Número de pontones	52
TABLA N° 27 Total de alcantarillas	54
TABLA N° 28 Estaciones meteorologicas	55
TABLA N° 29 Precipitació mensual estación otuzco	56
TABLA N° 30 Proyección de caudales unitarios	57
TABLA N° 31 Consideraciones de diseño	61

INDICE DE FIGURAS

FIGURA N° 01 Ubicación a nivel departamental	27
FIGURA N° 02 Ubicación a nivel distrital	27
FIGURA N° 03 Ubicación de caserios	28
FIGURA N° 04 Procesos para recolección de datos	28
FIGURA N° 05 Foto de conteo de vehículos	44
FIGURA N° 06 Fotografia de calicatas	47

DEDICATORIA

A Dios todo poderoso por su inmenso amor y las bendiciones brindadas en este proceso de formación profesional y humanal.

A la Universidad Privada De Trujillo UPRIT. Por su acogida y fortalecimiento en adquisición de conocimientos muy útiles para el desempeño en ingeniería civil

Bonifacio

John

AGRADECIMIENTO

A la Universidad Privada de Trujillo, la que nos albergó durante este tiempo de estudios, permitió que día a día aprendamos muchas cosas nuevas y que vayamos creciendo profesionalmente.

Al asesor de tesis, por sus aportes, orientación brindada, amistad y apoyo durante nuestros avances en los estudios y elaboración de esta tesis.

A mis docentes y amigos que forma desinteresada y paciente nos apoyaron en la realización de nuestra carrera.

A nuestros padres y familiares, por apoyo incondicional y por brindarnos las fuerzas en apoyo de manera incondicional para el logro de nuestras metas.

Los autores

BACH. MAMANI MAMANI BONIFACIO BACH. FLORES GALLEGOS JOHN FRANCISCO

RESUMEN

La presente investigación consiste en proponer un diseño de mejoramiento y rehabilitación de caminos vecinales de los caseríos: La Morada – Tres Ríos – Cruce Uruchual – Caballera – Alfonso Ugarte del Distrito de Agallpampa, Provincia de Otuzco.

Durante el proceso de investigación se ha determinado la problemática de orden prioridad, que según la característica de la región sierra, la topografía de las zonas es ondulada y accidentada con pendiente contrapendientes pronunciadas. Las vías de acceso de tocha carrozable en mal estado, con faltas de mantenimiento rutinario y periódico. La mayoría de la población que se trasladan, generalmente en épocas de lluvias son afectadas con inhabilitación de carreteras, debido a estas carencias de traslado, necesariamente tienen que paralizar sus productos de sostenibilidad la agricultura y ganadería.

Para lo cual se ha trabajado las actividades, conteo de tráfico vehicular, llegando hasta 96 vehículos/día, levantamiento topográfico de campo, una longitud de 19, 371.38 metros lineales, en dos tramos, se ha tomado datos del seccionamiento transversal, se ha realizado el estudio de mecánica de suelos que se presenta inspeccionando superficialmente si es suelo suelto, así mismo se ha realizado estudio geológico, determinando la geografía, relieves y otras, la disposición de canteras y otros labores necesarias para la obtención de datos e informaciones. Finalmente, en conclusión, se estima un presupuesto para su posterior ejecución S/ 13, 529,255.60 nuevos soles.

Palabras claves: Mejoramiento, rehabilitación, camino vecinal, estudio de suelos, diseño geométrico.

ABSTRACT

The present investigation consists in proposing a design of improvement and rehabilitation of neighborhood roads of the hamlets: La Morada - Tres Ríos - Cruce Uruchual - Caballera - Alfonso Ugarte of the District of Agallpampa, Province of Otuzco.

During the investigation process, the priority order problem was determined, which according to the characteristic of the Sierra region, the topography of the areas is undulating and rugged with steep slopes. The access roads of a stump in bad condition, with lack of routine and periodic maintenance. The majority of the population that move, generally in times of rains are affected with disabling of roads, due to these lacks of transfer, necessarily have to paralyze their products of sustainability agriculture and livestock.

For which the activities have been worked, vehicular traffic counting, reaching up to 96 vehicles / day, topographic field survey, a length of 19, 371.38 linear meters, in two sections, cross sectional data has been taken, it has been carried out the study of soil mechanics that is presented by superficially inspecting if it is loose soil, likewise a geological study has been carried out, determining the geography, reliefs and others, the arrangement of quarries and other tasks necessary for obtaining data and information.

Finally, in conclusion, a budget is estimated for its subsequent execution S / 13, 529,255.60 nuevos soles.

Keywords: Improvement, rehabilitation, neighborhood road, soil study, geometric design.

I. INTRODUCCION

Las carreras en el Perú y del mundo es una fuente importante que permite el desarrollo económico de una nación, integrando la conexión de ciudades.

En la actualidad, los caseríos del distrito de Agallpampa, la vía se encuentra a nivel de trocha Carrozable en mal estado debido a la falta de mantenimiento rutinario y periódico, debido a la inadecuada infraestructura vial en la zona y para tener un acceso eficiente de la vía principal.

Sabemos que las vías de comunicación constituyen los ejes de desarrollo de nuestra sociedad, por lo que se hace indispensable que las autoridades inviertan recursos, materiales y humanos para su mantenimiento y conservación. Por otro lado, las fuertes lluvias, de carácter inusual, que se ha presentado en los últimos a los hacen que las actividades de conservación de las vías se vuelvan un trabajo cotidiano y de carácter urgente. Por estas razones, se ha creído conveniente prioridad como obras de emergencia y finalidad la construcción, mantenimiento y rehabilitación de sus caminos vecinales como suma urgencia es que se hace la investigación. Denominando: Mejoramiento Y Rehabilitación de Caminos Vecinales Caserío: La Morada – Tres Ríos – Cruce Uruchual – Caballera – Alfonso Ugarte del Distrito de Agallpampa, Provincia de Otuzco, Region La Libertad 2019. Para lo cual se ha estructurado en VI capítulos, que se describe en cada una de ellas.

1.1. Realidad Problemática

Las condiciones de infraestructura y los servicios de transporte en el Perú, son fuente primordial que permite el desarrollo económico, necesitan ser más atendidos con seguridad, limpios y accesibles. Generalmente en zonas rurales.

Los caminos vecinales se han convertido como una de las fuentes principales para el desarrollo de las ciudades, caseríos.

En región la Libertad, Provincia de Otuzco, distrito de Agallpampa, sus caseríos vecinales: La Morada – Tres Ríos – Cruce Uruchual – Caballera – Alfonso Ugarte. Se encuentran con serios problemas, de orden prioridad, que según la característica de la región sierra, la topografía de las zonas son onduladas y accidentadas con pendiente contrapendientes pronunciadas. Las vías de acceso de tocha carrozable en mal estado, con faltas de mantenimiento rutinario y periódico. La mayoría de la población que se trasladan, generalmente en épocas de lluvias son afectadas con inhabilitación de carreteras, debido a estas carencias de traslado, necesariamente tienen que paralizar sus productos de sostenibilidad la agricultura y ganadería.

Según el tráfico vehicular realizada, transitan más de 73 vehículos por día, hasta máximo de 95 veh./dia, el transito es desviado por zonas con mejor estructura de transito perdiéndose la mayor parte del afirmado de la calzada.

Siendo la razón del presente proyecto, requiere mejorar esta problemática con la integración de vías de comunicación de orden prioridad, las condiciones de vida de la población, que continúe con el desarrollo de su localidad y así poder trasladar sus productos de sostenibilidad de comercio.

1.2. Formulación del problema

Pregunta general

¿Cuál es la propuesta para el diseño del mejoramiento y rehabilitación de los caminos vecinales de caseríos del distrito de Agallpampa, provincia de Otuzco, región La Libertad, para mejorar la transcitabilidad?

Preguntas especiales

¿Cuál es la característica de flujo de tráfico vehicular en horas punta en los caseríos: ¿La Morada – ¿Tres Ríos – Cruce Uruchual – Caballera – Alfonso Ugarte del distrito de Agallpampa, Provincia de Otuzco, Región la Libertad 2019?

¿Cuál son los estudios básicos a realizar para mejoramiento y rehabilitación de los caminos vecinales de caseríos del distrito de Agallpampa, provincia de Otuzco, Región La Libertad, para mejorar la transcitabilidad?

¿Cuál es el diseño adecuado según el Diseño Geométrico de Carreteras para mejoramiento y rehabilitación de los caminos vecinales de caseríos del distrito de Agallpampa, provincia de Otuzco, ¿Región La Libertad, para mejorar la transcitabilidad?

¿Cuál es el espesor del afirmado para la capacidad de soporte para mejoramiento y rehabilitación de los caminos vecinales de caseríos del distrito de Agallpampa, provincia de Otuzco, Región La Libertad, para mejorar la transitabilidad?

¿Cuál es el costo estimado como propuesta de solución para su posterior ejecución?

1.3. Justificacion del tema.

Los caminos vecinales hoy en día son muy importantes, para el desarrollo de los pueblos del Perú y del mundo, integrando las culturas, desarrollo económico para una calidad de vida.

Según la problemática identificado, la situación actual los tramos de caminos vecinales, se encuentran en estado inadecuado la infraestructura vial, trocha carrozable, con topografía accidentada y ondulada, en épocas de lluvia el acceso es un caos, los recursos agropecuarios no se pueden trasladar con facilidad, según el tráfico vehicular realizado se registra 73 a 95 vehículos por día con un IMD mayor a 89 veh/diarios, por lo cual requieren de suma urgencia realizar actividades de mantenimiento rutinario y periódico, además las autoridades locales y regionales ni nacionales pasan por desapercibido. Es importante desde ya como investigador proponemos una alternativa de solución frente a la problemática identificada, siendo el motivo a plantear el proyecto para su mayor probabilidad posterior ejecución, de esta manera

contribuyendo con el desarrollo de los caseríos, siendo la finalidad de proponer el diseño para el mejoramiento y rehabilitación de caminos vecinales del distrito de Agallpampa, provincia de Otuzco, departamento de la Liberta en específico los caseríos que se detallan: La Morada, Tres Ríos, Uruchual, Caballera y Alfonso Ugarte bajo una perspectiva económica en beneficio de la población que requiere esta atención prioritaria.

Beneficios directos:

- Facilidades de acceso a los caseríos.
- Mejora las condiciones de transitabilidad.
- Evita Accidentes de tráfico y congestiones vehiculares.
- Facilita el acceso de los pequeños comerciantes para vender sus Productos.

Beneficios indirectos:

El Tránsito vehicular mejorara incluso para turistas que tienden a llegar continuamente a la provincia.

1.4. Objetivos

1.4.1. Objetivo General.

Proponer el diseño para el mejoramiento y rehabilitación de los caminos vecinales de caseríos del distrito de agallpampa, provincia de otuzco, región la Libertad, para mejorar la transcitabilidad.

1.4.2. Objetivos Específicos.

- Identificar el tráfico de la zona mediante el conteo de tráfico en horas puntas.
- Realizar el estudio básico de topografía, mecánica de suelos, hidrología y ambiental de la vía.
- Elaborar el diseño geométrico de mejoramiento y rehabilitación de la vía, según la normatividad vigente.

- Diseñar el espesor del afirmado para la capacidad de soporte.
- Elaborar el costo estimado como propuesta de solución en su posterior ejecución.

1.5. Antecedentes

Antecedentes nacionales

Ferreyra, J. (2012). Actividades de Mantenimiento Rutinario Y Periódico en Una Carretera del Perú.

Los trabajos de mantenimiento de carreteras involucran a los profesionales que participan en esta actividad, la cual alcanza el terreno legal, así como social. Gracias a este tipo de contratos se está llegando a las poblaciones que durante muchos años se encontraban incomunicadas, siendo beneficiados al mejorar su forma de vida. Se crea expectativas de mejora cada día a las poblaciones que son beneficiadas con este tipo de proyectos. Es un proyecto complejo dado el periodo largo de ejecución por lo que siempre tiene que ver con personas. El estado realiza una transferencia de riesgo a los contratistas, generando un ahorro importante para el estado. Debido al servicio de conservación por niveles de servicio que se ejecutó, y como parte contractual, se cuenta con la información del estudio de tráfico de este tramo.

Esquivel, K. (2014). Tesis pregrado. Diseño Para el Mejoramiento de la carretera vecinal tramo Chulite-Rayambara-La Soledad, Distrito de Quiruvilca y Santiago de Chuco, Provincia De Santiago De Chuco – Departamento La Libertad.

Los autores tomaron en cuenta diferentes estudios y criterios básicos para el diseño de una vía, los han desarrollado en distrito de Quiruvilca. Desde un punto de vista ha iniciado con la recopilación de información referida a la zona, reconocimiento del terreno, levantamiento topográfico presentando pendientes transversales entre 51% y 100%, en estudio d mecánica de suelos ha determinado las características físico-mecanicas, mediante los ensayos de

SUCS y AASHTO, la gran parte se encontró suelo limoso de plasticidad media y arcilla ligera con arena de plasticidad entre alta y mediana, y en menor proporción compuesto por un suelo de arena limosa la cual no presenta plasticidad, con un contenido de humedad entre 16.63% al 38.71%.

Calidonio, E.D., Meléndez, C.B., Carrillo, S. J. (2010). Tesis pregrado. Diseño de mezcla suelo – agregado-emulsión como alternativa para mejoramiento de caminos de bajo volumen de tránsito.

El autor ha desarrollado una metodología que sirve como una guía para la estabilización de caminos de bajo volumen de tránsito, empleando las emulsiones asfálticas, con las respectivas pruebas de laboratorio, con el fin de determinar la calidad de la mezcla.

Según los ensayos realizados como resultado es apto el punto de vista mecánico para conformar la base SAE, en granulometría se clasifica como un suelo grava arenoso con índice de plasticidad nulo, la cual no será necesario mejorar los parámetros.

En conclusión, que la estabilización de caminos de bajo volumen de transito con el uso de emulsiones asfálticas afirmado se contribuye al desarrollo sostenible de las comunidades beneficiadas.

Rodriguez, & Gutierrez, (2012). Análisis de Vulnerabilidad de Redes de Carretera Mediante Indicadores de Accesibilidad.

En sus Conclusiones:

Ha presentado una metodología que permite determinar el impacto de la interrupción del tráfico en ciertos tramos de una red de carreteras. Esta metodología se basa en la generación de escenarios (hipotéticos o reales) de evaluación y el cálculo de un indicador de accesibilidad mediante las rutinas de análisis de redes disponibles en un Sistema de Información

Geográfica (ArcGIS). Las diferencias observadas (pérdidas de accesibilidad) entre cada uno de los escenarios de evaluación y el escenario de referencia (que contempla el normal funcionamiento en todos los tramos de la red) permiten analizar la vulnerabilidad de la red y determinar la criticidad de cada

uno de los tramos analizados. La media ponderada de las pérdidas de accesibilidad permite conocer la intensidad de los efectos del cierre de los diferentes tramos.

1.6. Bases teóricas

1.6.1. Mejoramiento de caminos

Consiste en realizar trabajos de rehabilitación del camino, implica la modificación sustancial de la geometría y de la estructura de pavimento, incluye en este tipo de obras de arte, la transformación de un camino de tierra, en un camino afirmado.

Tipos de mantenimientos de carreteras

a. Mantenimiento rutinario

Este tipo de mantenimiento se realiza durante el transcurso del año, su finalidad es evitar el inicio de los deterioros en la vía.

Se realizan las actividades siguientes:

- Limpieza de cunetas
- Limpieza de alcantarillas
- Limpieza de derrumbes menores
- Desbroce de las cunetas y áreas laterales
- Reparación de la señalización vertical
- Limpieza de los desfogues de los puentes
- Limpieza de los elementos derramados sobre la vía (Calzada)
- Repintado de la señalización horizontal
- Rellenado de Baches en la vía

b. Mantenimiento periódico

Este tipo de mantenimiento se realiza cada 01 año a 05 años con el fin de asegurar la vida útil de la carretera.

Las actividades a realizar son las siguientes:

- Reconformación de la plataforma
- Sellado asfaltico
- Capa de refuerzo asfaltico
- Reposición de ripio
- Perfilado y nivelado

c. Mantenimiento preventivo

En este tipo de mantenimiento se realiza antes de la época con mayor presencia de precipitaciones pluviales.

Las actividades a realizar son las siguientes:

- Limpieza de cunetas
- Limpieza de alcantarillas
- Limpieza de las pilas de los puentes
- Dragado de los ríos
- Limpieza de las torrenteras

d. Mantenimiento de emergencia

Este tipo de mantenimiento se realiza durante la época de precipitaciones pluviales, en este periodo se pueden presentarse casos de emergencia. Las actividades a realizar son las siguientes:

- Limpieza de derrumbes
- Reposición de la plataforma
- Construcción de variantes
- Estabilización de taludes

1.6.2. Rehabilitación de caminos

Consiste en un trabajo mayor de reperfilado, recomposición de grava, compactación, rehabilitación y complementación de drenaje, reparación y complementación de muros, pontones, etc. En efecto permite recuperar, devolver a la infraestructura vial sus características originales y adecuarlas a su nuevo periodo de servicio; los cuales están referidas principalmente a reparación y/o ejecución de pavimentos, puentes, túneles, obras de drenaje, de ser caso movimiento de tierras en zonas puntuales y otros.

1.6.3. Generalidad del diseño geométrico

El Diseño Geométrico de Carreteras, es un manual técnico de carácter normativo, que regula a nivel nacional los parámetros a cumplir en diseños de acuerdo al tipo de carretera.

1.6.4. Clasificación de las carreteras según su demanda

Según el manual de carreteras (Diseño Geométrico DG- 2014), nos da las siguientes definiciones.

TABLA N° 01: Clasificación de carreteras

CLASIFICACION	IMDA	SEPARADOR CENTRAL	CALZADAS CON ANCHO MININO	CRUCES O PEATONALES
Autopista de primera clase	6.000 veh/día	Min. 6.00 m	2 o más carriles de 3.60 m.	Sin cruces o pasos a nivel y en Zona urbana peatonales superficie pavimentada
Autopista de segunda clase	6.000 y 4.001 veh/día	De 6.00 m. – 1.00 m.	2 o más carriles de 3.60 m.	Cruces o pasos vehiculares y puentes peatonales en zonas urbanas
Carretera de primera clase	4.00 y 2.001 veh/día	-	2 o más carriles de 3.60 m.	Cruces o pasos vehiculares a nivel y zonas urbanas con puentes peatonales
Carretera de segunda clase	2.00 y 4,00 veh/día	-	de 2 carriles de 3.30 m.	Cruces o pases peatonales vehiculares, en zonas -

pág. 19

				urbanas con puentes peatonales
Carretera de tercera clase	Menores a 400 veh/día	-	2 carriles de 3.00m. Excepcion al hasta 2.50m.	Se aplica estabilizadores y/o micro pavimentos o afirmado
Trocha carrozable	No alcanzan características geométricas, IMDA menores a 200 veh/día	-	4.00m.	Se construye con ensanches a cada 500m.

Fuente: Diseño Geométrico DG- 2014

1.6.5. Clasificación según condiciones orografías

- Terreno Plano (TIPO I)
- Terreno Ondulado (TIPO II)
- Terreno Accidentado (TIPO III)
- Terreno Escarpado (TIPO IV)

1.6.6. Parámetros básicos para el diseño.

Para un buen diseño se deben evaluarse y seleccionarse los siguientes parámetros:

- a. Estudio de la Demanda de Tránsito.
- b. La velocidad de diseño en relación al costo del camino.
- c. La sección transversal de diseño.
- d. El tipo de superficie de rodadura.

1.6.7. Estudio de la demanda de transito

Se desarrolla sobre la base de la trocha carrozable existente, sin parámetros de diseño ajustados a la normatividad vigente.

Calculo de tasas de crecimiento y la proyección

$$Tn = To(1+i)^{n-1}$$

Dónde:

Tn = Tránsito proyectado al año "n" en veh/día.

To = Tránsito actual (año base o) en veh/día.

n = Años del período de diseño.

i= Tasa anual de crecimiento del tránsito. Definida en correlación con la dinámica de crecimiento socio-económico (*) normalmente entre 2% y 6% a criterio del equipo del estudio.

1.6.8. Elementos de Diseño Geométrico

Se definen de la siguiente orden

- La velocidad de diseño seleccionado
- La distancia de visibilidad necesaria
- La estabilidad de la plataforma de la carretera, de la superficies de rodadura, obras de arte y de los taludes.
- Preservación de medio ambiente.

1.6.9. Pendiente

En los tramos de corte se evitará pendientes menores a 0.5%, por lo tanto, se usará rasantes horizontales en los casos que las cunetas adyacentes pueden ser dotadas por pendiente necesaria para garantizar el drenaje y la calzada cuente con un bombeo para tratamiento superficial de 2%. En general se considera aceptable, no sobrepasar los límites máximos de pendientes en carreteras con altitudes mayores a los 3000 m.s.n.m.

TABLA N° 02: Pendientes máximos

OROGRAFIA TIPO	TERRENO PLANO	TERRENO ONDULADO	TERRENO MONTAÑOSO	TERRENO ESCARPADO
VELOCIDAD DE DISEÑO				
20	8	9	10	12
30	8	9	10	12
40	8	9	10	10
50	8	8	8	8
60	8	8	8	8
70	7	7	7	7
80	7	7	7	7
90	6	6	6	6

Fuente: Manual de diseño geométrico de carreteras

1.7. Definición de términos básicos

Caserío

Caserío o aldea, Según la categoría de la población, es el centro poblado, un asentamiento humano comúnmente localizado en zonas rurales.

Un caserío es una vivienda tradicional vasca. Se le conoce también por su nombre en euskera, baserri, y es una casa de tipo rural, construida normalmente de manera aislada, en piedra y con una planta de considerable tamaño.

Carretera

Es la Infraestructura de transporte cuya finalidad es permitir la circulación de vehículos en condiciones de continuidad en el espacio y el tiempo, con niveles adecuados se seguridad y comodidad, puede estas constituida por una o varias calzadas, varios sentidos de circulación y estar de acuerdo a las exigencias de la demanda de tránsito y la clasificación funcional de la misma. (Fuente: manual de carreteras - MTC).

Calidad de vida

La podemos vincular con los grandes avances en la biotecnología, la cual ha permitido contar con nuevas expectativas de vida, ya que anteriormente no se tenía acceso tan amplio como actualmente lo tenemos. Esto permite cubrir las

necesidades más básicas como son en el ámbito emocional, económico, social y educacional.

Nivel afirmado

Es la capa compactada de material granular natural o procesado con gradación específica que soporta directamente las cargas y esfuerzos del tránsito. Debe poseer la cantidad apropiada de material fino cohesivo que permita mantener aglutinadas las partículas. Funciona como superficie de rodadura en carreteras y trochas carrozables.

Tramos

Son los con carácter genérico, cualquier porción de un camino, comprendida entre dos puntos referenciales, localizados a lo largo del trazo o eje del camino.

Trocha carrozable

Es una vía transitable que no alcanza las características geométricas de una carretera.

Transitabilidad

Es el nivel de servicio de infraestructura vial que asegura un estado, la misma que permite un flujo vehicular regular un determinado periodo.

Vulnerabilidad

Se define como el grado o capacidad disminuida (incapacidad) de resistencia de una persona o de un grupo de personas para anticiparse, cuando se presenta un fenómeno amenazante, para luego después de haber ocurrido un desastre.

La vulnerabilidad depende de varios factores, tales como, salud, condiciones higiénicas y ambientales que se relaciona con la capacidad de un individuo o de una comunidad para enfrentar actividades peligrosos o dañinos específicos en un momento dado.

Ejemplo, Vulnerabilidad económica son familias de escasos recursos económicos, con generalmente viven en lugares de alto riesgo alrededor de las ciudades.

Metrado

Cálculo o la cuantificación por partidas de la cantidad de obra por ejecutar.

1.8. Formulación de hipótesis

Con el desarrollo de una adecuada planificación y diseño de mejoramiento y rehabilitación de caminos vecinales de los caseríos: La Morada, Tres Ríos, Uruchual, Caballera y Alfonso Ugarte, del distrito de Agallpampa, se permite el acceso e integración para el desarrollo económico de los caseríos

II. MATERIAL Y METODOS

2.1. Material:

TABLA N° 03: Presupuesto - Materiales

DESCRIPCION	UNID.	CANTIDAD	PRECIO	PARCIAL
Combustible	Glb.	2.00	150.00	300.00
Estación Total	HH	1.00	120.00	120.000
Gps	Unid.	1.00	2000.00	2000.00
Jalones	Día.	4.00	30.00	120.00
Útiles de Oficina	Glb.	1.00	100.00	100.00
Gps Diferencial	Día	1.00	1000.00	1,000.00
	3,640.00			

Fuente: Elaboración Propia

TABLA N° 04: Presupuesto – Recursos Humanos

DESCRIPCION	UNID.	CANTIDAD	PRECIO	PARCIAL
Investigador	Mes	1.00	0.00	0.00
Docente de la Facultad	Mes	1.00	0.00	0.00
Chofer	Mes	2.00	2000.00	4000.00
Topógrafo	Mes	1.00	2800.00	2800.00
TOTAL	6,800.00			

Fuente: Elaboración Propia

TABLA N° 05: Presupuesto – Servicios

DESCRIPCION	UNID.	CANTIDAD	PRECIO	PARCIAL
Empastados Y Anillados	Und.	5.00	40.00	200.00
Agua Y Luz	Glb.	1.00	235.00	235.00
Internet	Mes	2.00	150.00	300.00
Red Móvil	Mes	1.00	89.00	89.00
Viáticos	Mes	10.00	40.00	400.00
TOTAL DE PRESUP'UEST	ГО			1,224.00

Fuente: Elaboración Propia

TABLA N° 06: Resumen de Presupuesto

DESCRIPCION	CODIGO		OBSERVACION
COSTO DIRECTO	CD	9,656,692.44	(INFRAESTRUCTURA)
GASTOS GENERALES	GG	675,968.47	7% CD
UTILIDAD	UTI	772,535.40	8 % CD
SUB TOTAL	ST	11,105,196.31	CD + GG + UTI
IGV 18%	IGV	1,998,935.34	18% ST
PRESUPUESTO DE OBRA	РО	13,104,131.65	ST + IGV
SUPERVISION	SUP	393,123.95	3.00 % PO
COSTO DE OBRA + SUPE	RVISION	13,497,255.60	APORTE PRCC
EXPEDIENTE TECNICO (APORTE DE MUNICIPIO)	ET	32,000.00	APORTE MDA
INVERSION TOTAL	TP	13,529,255.60	PT + SUP + ET

2.2. Materiales De Estudio

2.2.1. Población y muestra

Tramo de carretera de los caseríos la morada, Tres Ríos, Uruchual, Caballera y Alfonso Ugarte del distrito de Agallpampa, provincia de Otuzco, Departamento de la Libertad, siendo una longitud de una longitud de 19, 371.38 metros lineales, en dos tramos.

Según el diseño no se trabaja con muestra, porque es de carácter no probabilístico, El diseño de la carretera de bajo tránsito de los caseríos.

FIGURA N° 01: Ubicación A Nivel Departamental

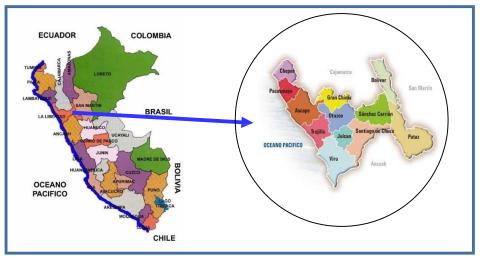
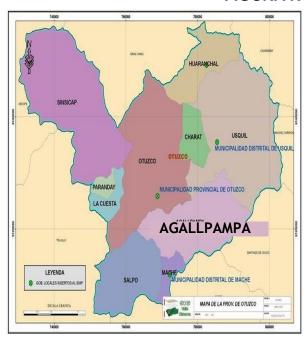
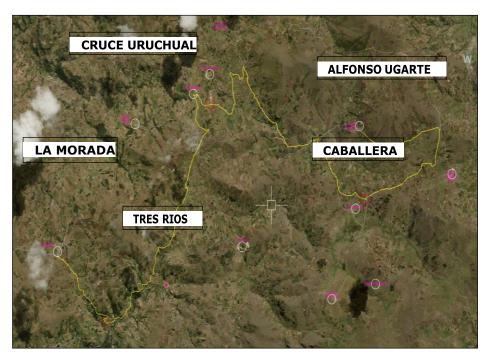



FIGURA N° 02: Ubicación A Nivel Distrital.

SANTA ROSE LABUNDAY
MAYES LA MORADA TRES RIOS
EL PROGRESO SAN ANUSTIN

CAN VICENZE LA UNION
CUSHPIORCO
EANGALPAMPA CUSHPIORCO
EANGALPAMPA CERRO ZANGO
CHUAL
CARATA AGALLPAMPA
CAUPAR EL PUNAS PUEBLO LIBRE

AGALLPAMPA NUEVO CALIFORNIA
LA FLORDA MAYEL
AMAGRAMBA
HUMANMARCA
SALPO


MACHE
JULCAN

USQUIL

Fuente: Google Maps.

FIGURA N°03: Ubicación de los Caseríos: La Morada, Tres Ríos, Uruchual, Caballera y Alfonso Ugarte, Distrito de Agallpampa, Provincia de Otuzco, La Libertad.

Fuente: Google Earth

2.3. Tecnicas, procedimientos e instrumentos.

2.3.1. Para recolectar datos

En la presente investigación se utiliza la técnica de recolección de información (observación-fotografías) a través de un conteo de tráfico y antecedentes de la cantidad vehicular donde aplicaremos el diseño geométrico de carreteras donde se diseñará bajo los parámetros según al reglamento.

FIGURA N°04: Procesos para Recolección de Datos

Una vez recopilado los datos de campo se pasó al trabajo de gabinete, empezando con la generación de los planos topográficos y posteriormente con el diseño de la vía.

2.3.2. Para procesar datos.

Para obtener la confiabilidad el instrumento, se utilizó cuadros comparativos, cuadros estadísticos, programas especializados como: AutoCAD, Civil 3D, S10 y Project.

Los formatos de conteo de tráfico donde participan el tránsito pesado, y liviano con un total de 76-95 vehículos por día.

2.3.3. Operacionalizacion de variables.

Variable de estudio

Mejoramiento y rehabilitación de caminos vecinales

Consiste en mejorar y rehabilitar la carretera de bajo tránsito. Un correcto proceso constructivo que conlleva a una mejora de transitabilidad vehicular, como también el fácil acceso a la producción agrícola y facilidades de comercio. Por ente cumple con las normas y reglamentos vigentes para garantizar su correcto funcionamiento para los sectores beneficiados.

TABLA N°07: Operacionalización de variables.

Variables	Definición Conceptual	Definición Operacional	Dimensiones	Indicadores	Items	
			Recaudación de información	Antecedentes	Datos históricos de la construcción del puente.	
				Revistas y diarios informativos	Diseño geométrico de carreteras	
	De acuerdo al diseño geométrico de las carreteras obtendremos un		Estudio	Horizontal	Traslado al lugar de la investigación.	
		de las carreteras obtendremos un óptimo diseño		los instrumentos	Topográfico	Vertical
Mejoramiento y rehabilitación de los	para propuesta de los caminos vecinales y evitar accidentes de	adecuados para una correcta planificación de la investigación como la norma geométrica de carreteras.	Conteo de trafico	Horas punta donde el tráfico es más aglomerado.	Número máximo de vehículos	
la Carrozal malas co que se	también causa de		Estudio de Suelos	Recopilación de la información en campo	Todo lo recaudado en campo y gabinete.	
				Redactar lo investigado	Plasmarlo en un informe en Word.	
			Diseño geométrico	Conteo de tráfico, elementos del D.G.	Topografía procesada, parámetros de DG-2014	
			Diseño de afirmado	Espesor según conteo trafico	Número de vehículos diarios	
			Costos	Presupuesto general	Procesar mediante s10	

Fuente: Elaboración Propia.

Tipo de estudio

Según el tipo de estudio es descriptivo, porque permite describir un proceso, no se considera la hipótesis, se plantean los objetivos y permite describir los procesos

Diseño de investigación

Según el tipo de investigación es No experimental - descriptivo, porque no manipula la variable, asimismo corresponde a un diseño transversal por que se realiza en un periodo definido en el año 2019.

Aquí se observan y se describen los fenómenos en forma natural.

Línea de investigacion: Ciudades e infraestructura sostenible.

Área: Transporte y Diseño urbano sostenible.

III.RESULTADOS

3.1. Topografía

TABLA Nº 08: Ubicación Política

Departamento	La Libertad		
Provincia	Otuzco		
Distrito	Agallpamapa		
Caseríos	La Morada-Tres Ríos - Desvio Uruchual-		
	Caballera-Alfonzo Ugarte		
Región Geográfica	Sierra		
Región Geográfica			

Fuente: MDA

El tramo a intervenir corresponde a una trocha carrozable (camino vecinal), un total de 19,371.38 metros (Km. 19+371.38), de los cuales se han considerado para la intervención del proyecto es de **17,350.48 metros**, en dos tramos:

TABLA N° 09: Tramos intervenidos

	TRAMO I	COORDENA	DAS	СОТА
			NORTE	(MSNM)
INICIO	RUTA LI-790 TRAMO: LA MORADA - (KM 0 + 000.00).	779185.04	9125617.47	3,551.21
FIN	RUTA LI-790 TRAMO: RECREO - (KM 8 + 764.10).	782548.79	9128955.63	3,471.14
		COORDENADAS		
	TRAMO II			COTA
		ESTE	NORTE	(MSNM)
INICIO	RUTA LI-790 TRAMO: CUSHCANDAY - (KM 10 + 785.00).	783441.32	9129405.34	3,498.47
FIN	RUTA LI-790 TRAMO: ALFONSO UGARTE - (19+371.38).	788606.40	9128222.35	3,827.69

Fuente: Elaboración propia

VIAS DE COMUNICACIÓN Y ACCESO

A. Accesibilidad y Condiciones de Caminos:

La ruta única accesible, partiendo de la ciudad de Trujillo por la carretera principal asfaltada el Distrito de Agallpampa de 88 Km, en este lugar se toma la ruta asfaltada y se llega al Desvió Motil (RUTA LI-799: EMP. PE-10A), de 3

Km, y luego continuar por la trocha carrozable aproximadamente de 18 Km, se llega al caserío de La Morada punto de inicio: RUTA LI-790 TRAMO (KM 0 + 000.00), se continua por trocha carrozable hasta llegar al caserío Alfonso Ugarte, punto final RUTA LI-790 TRAMO (KM 19 + 371.38).

TABLA N° 10: Accesibilidad y condiciones de caminos

DE	A	TIPO DE VIA	DISTANCIA (Km)	TIPO DE SERVICIO	TIEMPO(Hrs)
Trujillo	Distrito de Agallpampa	Carretera Asfaltada	88.00	Bus, Autos. Pick up Camiones	1:45 min
Distrito de Agallpampa	Desvio Motil (Inicio)	Carretera Asfaltada	3.00	Bus, Autos. Pick up Camiones	0:15min
Desvio Motil (Inicio)	Caserío La Morada (Inicio)	Carretera Afirmado	18.00	Combis, Pick up Camiones	2 h
Caserío La Morada (Inicio)	Caserío Alfonso Ugarte (Final)	Carretera Afirmado	22	Combis, Pick up Camiones	2.5 h

Fuente: MDA

B. RECOPILACION DE INFORMACION

Para la elaboración del Informe, se ha obtenido la siguiente información:

- Carta Nacional 1: 100,000
- Google Earth
- Diversos planos obtenidos de la topografía de campo, del sector que han sido tomados los datos contando con una Estación Total y con estaciones diferenciales con un receptor GNSS serie Zenith 35.

En el sector se ha realizado los trabajos topográficos, de levantamiento taquimétrico y altimétrico de los diferentes puntos necesarios a lo largo de los 8,867.31 metros lineales del camino vecinal, para proseguir con el correspondiente procesamiento de datos en gabinete, dentro de los cuales tenemos La Red de Control Vertical y Horizontal, Perfil Longitudinal, Secciones Transversales.

Trabajo de Campo

Los trabajos de campo consistieron básicamente en el levantamiento topográfico, los datos correspondientes al levantamiento topográfico han sido procesados en sistemas computarizados, utilizando la Tecnología LEYCA 06 PLUSS y estaciones diferenciales con un receptor GNSS serie ZENITH 35 que permiten la transmisión de toda la información tomada en el campo a un Colector de Datos, y el software "AutoCAD civil 3D 2018" y conjuntamente el software "AutoCAD 2018" para el procesamiento y representación de los datos tomados, a planos topográficos. Los equipos empleados en el trabajo de campo fueron:

- O1 Estación Total LEYCA 06 PLUS.
- > 02 Prismas.
- O1 GPS GARMIN etrex 10.
- Receptor GNSS Zenith 35

El personal necesario fue lo siguiente:

- ➤ 01 Operador, a cargo de la estación total encargado realizar el levantamiento topográfico.
- O2 Personas encargas de realizar el seccionamiento portando prismas, para la toma de lectura con la estación total, de los puntos necesarios de cada sector en estudio.
- O3 personas encargadas de realizar las estaciones diferenciales con el receptor GNSS

levantamiento topográfico

Cabe resaltar que el levantamiento topográfico se realizó en coordenadas UTM, Sistema WGS 84 – 18-M, como primer trabajo se tomaron las coordenadas con respecto al Este, Norte y la cota correspondiente con el GPS GARMIN etrex 10.

Se ha realizado el trabajo de levantamiento topográfico, siendo el punto de partida 1 y punto final 100002, BM'S así como se muestra en el anexo:

TABLA N° 11: Puntos topográficos

	DLINITOS	ΓOPOGRAFIC		۸۵۸
PUNTO	ESTE	NORTE		DESCRIPCION
1		9128692.58		BM
2	783299.39	9128667.89	3482.56	CS
3		9128662.41	3482.82	CS
4	783304.14	9128657.93	3482.90	CS
5	783302.25	9128653.21	3484.75	PT
5610	782741.39	9128771.25	3473.68	Der
5611	782747.12	9128764.95	3473.87	Der
5612	782754.41	9128760.45	3473.97	Der
5613	782762.18	9128756.83	3474.07	Der
5614	782808.40	9128735.67	3474.67	Der
5615	782815.41	9128733.85	3474.75	Der
5616	782822.20	9128734.22	3474.82	Der
5617	782829.21	9128737.78	3474.90	Der
5618	782846.93	9128748.97	3475.16	Der
5619	782854.27	9128749.02	3475.25	Der
5620	782904.55	9128745.78	3475.84	Der
5621	782951.77	9128762.89	3476.43	Der
5622	782959.89	9128765.23	3476.53	Der
5623	783000.80	9128766.50	3477.02	Der
5624	783040.15	9128766.81	3477.49	Der
5625	783050.48	9128765.75	3477.61	Der
5626	783085.70	9128750.08	3478.07	Der
5627	783097.26	9128749.12	3478.20	Der
5628	783106.54	9128751.00	3478.31	Der
		9128669.70	3483.36	R-BM1
		9128669.70		R-BM1
100001	783276.21	9128669.70	3483.41	GD-BM1
	783236.57	9128674.57	3481.35	GD-BM2

Fuente: Elaboración propia

Nivelación Compuesta

Se llama altura o elevación de un punto sobre la superficie de la tierra a su distancia vertical respecto a un plano arbitrariamente tomado como superficie de nivel, o respecto a una superficie curva (real o imaginaria) elegida como superficie de referencia. El desnivel o diferencia de altura entre dos puntos es la distancia vertical entre las dos superficies de nivel que pasan por los mismos. Nivelar es la operación de medir distancias verticales, ya sea directa o indirectamente, con objeto de hallar desniveles. La superficie de referencia generalmente adoptada es la del nivel medio del mar. Cuando se trata solo de determinar la altura relativa de los puntos entre sí, no importa que la superficie de referencia sea arbitraria.

Medición de Ángulos Horizontales, Verticales y Distancias

El principio de lectura está basado en la lectura de una señal integrada sobre la superficie completa del dispositivo electrónico horizontal y vertical y la obtención de un valor angular medio. De esta manera, se elimina completamente la falta de precisión que se produce debido a la excentricidad y a la graduación, el sistema de medición de ángulos facilita la compensación automática en los siguientes casos:

Corrección automática de errores del sensor de ángulos.

- Corrección automática del error de colimación y de la inclinación del eje de muñones.
- Corrección automática de error de colimación del seguidor.
- Cálculo de la medida aritmética para la eliminación de los errores de puntería.

Medición de distancia.

Con estación total LEYCA 06 PLUS, se ha realizado la Corrección del error de refracción y curvatura.

El instrumento mide la distancia teniendo en cuenta la corrección de la refracción y curvatura terrestre.

Fórmula de Cálculo de Distancia: Fórmula para el cálculo de la distancia, teniendo en cuenta la corrección de la refracción y curvatura terrestre. Aplique la fórmula mostrada a continuación para convertir la distancia reducida y la altura.

Fórmula De Cálculo De Distancia

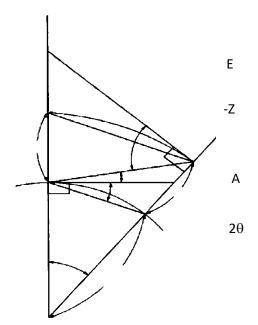
Distancia reducida D=AC(α) o BE(β)

Altura $Z = BC(\alpha)$ o $EA(\beta)$

 $D = L\{\cos\alpha - (2 \theta - \gamma) \sin\alpha\}$

 $Z = L\{sen\alpha + (\theta - \gamma)cos\alpha\}$

 $\theta = L \cdot \cos \alpha / 2R$Valor de la corrección de la curvatura terrestre


 $\gamma = K \cdot L\cos\alpha/2R....Valor de la corrección de la refracción atmosférica$

K = 0,14 ó 0,2.....Coeficiente de refracción

R = 6372km.....Radio de la Tierra

 α (δ β)......Ángulo de altitud

L.....Distancia geométrica

La fórmula de conversión de la distancia reducida y altura cuando no se aplica la corrección de la refracción y curvatura terrestre es la siguiente:

 $D = L\cos\alpha$

 $Z = Lsen\alpha$

Corrección atmosférica

La velocidad de la luz a través del aire no es constante y depende de la temperatura y presión atmosféricas. El sistema de corrección atmosférica

de Este instrumento corrige el valor automáticamente. El valor estándar de Este instrumento para 0ppm es 15°C, y 760mmHg (56□F, y 29,6 inHg).

Cálculo de la Corrección Atmosférica

Ka: Valor de la corrección atmosférica

P: Presión atmosférica ambiental (mmHg)

t : Temperarura atmosférica (°C)

$$Ka = \left\{ 279.66 - \frac{106.033 \times P}{273.15 + t} \right\} \times 10^{-6}$$

La distancia L(m) después de realizar la corrección atmosférica se obtiene de la siguiente manera:

L=I(1+Ka), donde:

I: Distancia medida sin realizar la corrección atmosférica.

Ejemplo:

En el caso de una temperatura de +20□C y una presión atmosférica de 635 mmHg,

I = 1000 m

$$Ka = \left\{ 279.66 - \frac{106.033 \times 635}{273.15 + 20} \right\} \times 10^{-6}$$

$$= 50 \times = 50 \times 10 - 6(50 \text{ppm})$$

$$L = 1000(1+50 \times = 1000(1+50 \times 10-6) = 1000.050 \text{ m}$$

Calculo del Angulo horizontal

La fórmula que a continuación se explica, se emplea para calcular el ángulo horizontal.

$$AH = AH_S + E_H \cdot \frac{1}{senV} + Y_H \cdot \frac{1}{tanV} + V \cdot \frac{1}{tanV}$$

Donde:

AHS: Angulo Horizontal medido por el sensor electrónico.

EH: Error de colimación horizontal

YH: Error de nivelado en ángulo recto al telescopio

V : Error de eje horizontal

Calculo del ángulo vertical

La fórmula que a continuación se explica, se emplea para calcular el ángulo vertical.

Donde:

AVS : Angulo vertical medido por el círculo electrónico

EV : Error de colimación vertical

YV : Desviación en el vertical, medida por el compensador automático del nivel.

3.2. Estudio de tráfico vehicular

Los estudios de tráfico vehicular es uno de los factores determinantes para el diseño de vías en el Perú, que tiene como objetivo cuantificar, clasificar y conocer el volumen de los vehículos que se movilizan por la carretera, en este caso permite conocer la demanda actual, a través del recojo de información.

Mediante el conteo de tráfico vehicular, se obtendrá el volumen de tránsito vehicular diario que pasan por un punto predeterminado de acurdo a la clasificación según su capacidad de carga.

Etapa de Gabinete.

Según el MTC, en la labor del gabinete, el cálculo del índice Medio Diario Anual I.M.D. en la estación de 7 días, se ha efectuado con la siguiente formula:

$$IMD_a = IMD_S * FC$$

$$IMD_S = \sum \frac{Vi}{7}$$

DONDE:

IMD_S = Índice Medio Diario Semanal de la Muestra Vehícular Tomada

IMDa = Índice Medio Anual

Vi = Volumen Vehícular diario de cada uno de los días de conteo

FC = Factores de Corrección Estacional

Características Generales del Conteo

Las características básicas del conteo vehicular fueron las siguientes:

- a) Los conteos fueron realizados durante siete días en cada una de las TRES (03) ESTACIONES; tomando como días representativas laborables los días lunes, martes, miércoles, jueves y viernes; sábado y domingo como días no laborables.
- b) Los conteos se realizaron durante las 24 horas del día, con el objetivo de identificar lo más claramente posible el comportamiento del flujo vehicular durante el día y la noche.
- c) Las horas de conteo fueron desde las 00:00 horas hasta 24:00 horas del día siguiente en dos turnos: de día y de noche de 12 horas respectivamente.
- d) Los conteos vehiculares fueron cerrados cada hora, con el objetivo de evaluar posibles intensidades de flujo extraordinarios.
- e) La clasificación vehicular utilizada fue la siguiente:

- Autos	- Micro Bus
 Station Wagon 	- Camión
- Pickup	- Semitrayler
 Camioneta rural 	- Trayler

Se ha utilizado según los formatos de MTC

TABLA N° 12: Control de trafico

	<u>ESTACION DE CONTROL DE TI</u> MIENTO Y REHABILITACIÓN DE CAMINO VECINAL R RUCE URUCHUAL - CABALLERA - ALFONSO UGARTE*	 UTA LI-790 TRAMO: I	LA MORADA -TRES
CODIGO	ESTACION	UBICACIÓN	ACTIVIDADES
E-1	RUTA LI-790: DESVIO A TRES RIOS - (KM 2+140.00)	KM. 2+140.00	
E-2	RUTA LI-790: DESVIO A CUSHCANDAY - (KM 9+300.00)	KM. 9+300.00	Conteo y Clasificación Vehicular
E-3	RUTA LI-790: DESVIO A CABALLERA- (KM 16+640.00)	KM. 16+640.00	

Fuente: Elaboración propia

TABLA N° 13: Índice Medio Diario Anual

INDICE MEDIO DIARIO ANUAL - E1								
"MEJORAMIENTO Y REHABILITACIÓN DE CAMINO VECINAL RUTA LI-790 TRAMO: LA MORADA -TRES RIOS - CRUCE URUCHUAL - CABALLERA - ALFONSO UGARTE" TRAMO : RUTA LI-790: DESVIO A TRES RIOS - (KM 2+140.00)	UBICACIĆ K SENTIDO	CM. 2+140.00 A y B						
COD. ESTACION: E-1 FACTOR DE CORRECCION: Ligeros: 1.08954545 Pesados 1.13798427								

HORA	LUNES	MARTES	MIERCOLES	JUEVES	VIERNE S	SÁBADO	DOMING O	TOTAL SEMANAL	IMDs = Σ Vi/7	FACTOR DE CORRECCIÓN	IMDa = IMDa x FC
Automovil	16	19	19	19	21	21	21	136	19	1.089545	21
Station Wagon	5	5	4	4	5	5	6	34	5	1.089545	5
Camioneta Pick Up	21	21	17	18	23	21	28	149	21	1.089545	23
Combi Rural	4	5	2	4	7	4	8	34	5	1.089545	5
Micro	•	-	-	-	•	-	-	0	0	1.089545	0
Bus Grande	•	-	-	-	•	-	-	0	0	1.089545	0
Camión 2E	22	22	19	22	23	21	26	155	22	1.137984	25
Camión 3E	3	2	2	1	4	2	5	19	3	1.137984	3
Semi trayler	-	-	-	-	-	-	-	0	0	1.137984	0
TOTAL	71	74	63	68	83	74	94	527	74		82

Fuente: Elaborado por los autores.

O DIARIO ANUALIZAD	DO						
RUTA LI-790: DESVIO A CUSHCANDAY - (KM 9+300.00)							
IMDa	%						
21	23.6%						
6	6.7%						
24	27.0%						
7	7.9%						
0	0.0%						
0	0.0%						
26	29.2%						
5	5.6%						
89	100.0%						
	21 6 24 7 0 0 26 5						

BACH. MAMANI MAMANI BONIFACIO
BACH. FLORES GALLEGOS JOHN FRANCISCO

TABLA Nº 14: Análisis de demanda actual

ANALISIS DE LA DEMAN	DA ACTUAL	: Por tipo de vehículo
INDICE MEDIO DIARIO A	NUALIZADO	0
RUTA LI-790: DESVIO A	TRES RIOS -	(KM 2+140.00)
E-1		
Tipo de Vehículo	IMDa	%
Automóvil	21	25.6%
Station Wagon	5	6.1%
Camioneta Pick Up	23	28.0%
Combi Rural	5	6.1%
Micro	0	0.0%
Bus Grande	0	0.0%
Camión 2E	25	30.5%
Camión 3E	3	3.7%
TOTAL	82	100.0%

Fuente: Elaboración propia

Para la proyección de la demanda utilizar la siguiente fórmula:

$$T_n = T_0 \big(\!1+r\big)^{\!(n\!-\!1)}$$

Donde: T_n = Tránsito proyectado al año en vehículo por día

T_o = Tránsito actual (año base) en vehículo por día

n = año futuro de proyeccción

r = tasa anual de crecimiento de tránsito

TABLA N°15: Proyección de la demanda

			Proye	cción de 1	ráfico -	Con Proye	ecto				
Tipo de Vehículo	Año 0	Año 1	Año 2	Año 3	Año 4	Año 5	Año 6	Año 7	Año 8	Año 9	Año 10
Tráfico Normal	82.00	82.00	83.00	86.00	87.00	90.00	92.00	94.00	96.00	100.00	103.00
Automovil	21.00	21.00	21.00	22.00	22.00	22.00	22.00	23.00	23.00	23.00	24.00
Station Wagon	5.00	5.00	5.00	5.00	5.00	5.00	5.00	5.00	5.00	6.00	6.00
Camioneta	23.00	23.00	23.00	24.00	24.00	24.00	25.00	25.00	25.00	26.00	26.00
Combi Rural	5.00	5.00	5.00	5.00	5.00	5.00	5.00	5.00	5.00	6.00	6.00
Micro	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Omnibus 2E	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Camión 2E	25.00	25.00	26.00	27.00	28.00	30.00	31.00	32.00	34.00	35.00	37.00
Camión 3E	3.00	3.00	3.00	3.00	3.00	4.00	4.00	4.00	4.00	4.00	4.00
Tráfico Generado	0.00	12.00	12.00	13.00	13.00	15.00	15.00	15.00	15.00	15.00	17.00
Automovil	0.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00	4.00
Station Wagon	0.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Camioneta	0.00	3.00	3.00	4.00	4.00	4.00	4.00	4.00	4.00	4.00	4.00
Combi Rural	0.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Micro	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Omnibus 2E	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Camión 2E	0.00	4.00	4.00	4.00	4.00	5.00	5.00	5.00	5.00	5.00	6.00
Camión 3E	0.00	0.00	0.00	0.00	0.00	1.00	1.00	1.00	1.00	1.00	1.00
IMD TOTAL	82.00	94.00	95.00	99.00	100.00	105.00	107.00	109.00	111.00	115.00	120.00

TABLA N° 16: Índice Medio Diario Anual E2

"MEJORAMIENTO Y URUCHUAL - CABAL				L RUTA LI	-790 TRAMO	: LA MORAD	A -TRES RIO	S - CRUCE		UBICACIÓN:	KM. 9+300.00
TRAMO :	RUTA LI-	790: DESVIC	A CUSHCANDA	Y - (KM 9+	300.00)					SENTIDO:	АуВ
COD. ESTACION:	E-2										ļ
FACTOR DE CORRE	CCION:	Ligeros:	1.08954545		Pesados:	1.13798427					
HORA	LUNES	MARTES	MIERCOLES	JUEVES	VIERNES	SÁBADO	DOMINGO	TOTAL SEMANAL	UMDs. = ΣVi/7	FACTOR DE CORRECCIÓN	IMDa = IMDa x Fo
Automovil	17	17	20	18	25	18	19	134	19	1.089545	21
Station Wagon	5	5	5	5	7	5	8	40	6	1.089545	6
Camioneta Pick Up	22	23	18	23	21	23	27	157	22	1.089545	24
Combi Rural	5	5	5	5	9	5	10	44	6	1.089545	7
Micro	-	-	-	-	-	-	-	0	0	1.089545	0
Bus Grande	-	-	-	-	-	-	-	0	0	1.089545	0
Camión 2E	21	21	21	21	25	25	25	159	23	1.137984	26
Camión 3E	2	5	4	4	7	4	6	32	5	1.137984	5
Semi trayler	-	-	-	-	-	-	-	0	0	1.137984	0
TOTAL	72	76	73	76	94	80	95	566	81		89

TABLA N° 17: Índice Medio Diario Anual E3

			INDIC	E MEDIO D	IARIO ANU	AL - E3				
					0 TRAMO:	LA MORADA	A -TRES		UBICACION:	KM. 16+640.00
RUTA LI	-790: DES\	/IO A CABALLI	ERA- (KM	16+640.00)					SENTIDO:	АуВ
E-3 Eccion	Ligeros:	1 08954545		Pesados:	1 13798427					
	Ligeros.	1.00554545		resuuos.	1.13130421					
LUNES	MARTES	MIERCOLES	JUEVES	VIERNES	SABADO	DOMINGO	TOTAL SEMANAL	IMDs = Σ Vi/7	FACTOR DE CORRECCION	= IMDa x FC
17	16	17	17	25	17	21	130	19	1.089545	20
6	5	5	5	7	5	7	40	6	1.089545	6
20	23	17	23	21	23	25	152	22	1.089545	24
5	5	5	5	9	5	9	43	6	1.089545	7
-	-	-	-	-	-	-	0	0	1.089545	0
-	-	-	-	-	-	-	0	0	1.089545	0
21	21	21	21	24	23	22	153	22	1.137984	25
2	5	4	4	6	5	5	31	4	1.137984	5
-	-	-	-	-	-	ŀ	0	0	1.137984	0
71	75	69	75	92	78	89	549	78		87
	CHUAL RUTA LI E-3 ECCION LUNES 17 6 20 5 21 2 -	CHUAL - CABALLE RUTA LI-790: DESY E-3 ECCION Ligeros: LUNES MARTES 17 16 6 5 20 23 5 5 21 21 2 5	CHUAL - CABALLERA - ALFONS RUTA LI-790: DESVIO A CABALLE E-3 1.08954545 ECCION Ligeros: 1.08954545 LUNES MARTES MIERCOLES 17 16 17 6 5 5 20 23 17 5 5 5 - - - 21 21 21 2 5 4 - - - - - -	REHABILITACION DE CAMINO VECINAL	TREHABILITACION DE CAMINO VECINAL RUTA LI-79 CHUAL - CABALLERA - ALFONSO UGARTE" RUTA LI-790: DESVIO A CABALLERA - (KM 16+640.00) E-3	REHABILITACION DE CAMINO VECINAL RUTA LI-790 TRAMO: CHUAL - CABALLERA - ALFONSO UGARTE" RUTA LI-790: DESVIO A CABALLERA - (KM 16+640.00) E-3	CHUAL - CABALLERA - ALFONSO UGARTE" RUTA LI-790: DESVIO A CABALLERA- (KM 16+640.00) E-3	REHABILITACION DE CAMINO VECINAL RUTA LI-790 TRAMO: LA MORADA -TRES	CREMABILITACION DE CAMINO VECINAL RUTA LI-790 TRAMO: LA MORADA -TRES	(REHABILITACION DE CAMINO VECINAL RUTA LI-790 TRAMO: LA MORADA -TRES CHUAL - CABALLERA - ALFONSO UGARTE" UBICACION: SENTIDO: ECCION Ligeros: 1.08954545 Pesados: 1.13798427 LUNES MARTES MIERCOLES JUEVES VIERNES SABADO DOMINGO SEMANAL SEMANAL PROPERTIES SEMANAL SEMANAL SEMANAL SEMANAL SEMANAL PROPERTIES SEMANAL SEMANA

TABLA N° 18: Índice Medio Diario Anualizado

INDICE MEDIO DIARIO ANUALIZADO						
RUTA LI-790: DESVI	O A CABALLERA- (KM	16+640.00)				
Tipo de <u>Vehiculo</u>	E - 3 IMDa	%				
Automovil	20	22.5%				
Station Wagon	6	6.7%				
Camioneta Pick Up	24	27.0%				
Combi Rural	7	7.9%				
Micro	0	0.0%				
Bus Grande	0	0.0%				
Camión 2E	25	28.1%				
Camión 3E	5	5.6%				
TOTAL	87	100.0%				
Fuente: Elaborado por los autore	es.					

FIGURA N° 05: Foto de Conteo de vehículos

Fuente: Elaboración propia

ANALISIS DE TRAFICO VEHICULAR IMDA

El análisis de conteo tráfico vehicular, es uno de los factores más importantes para determinar el tipo de diseño para el mejoramiento y rehabilitación de los caminos vecinales, inclusive para su posterior diseño de una vía afirmado con carpeta asfáltica.

Según los resultados de los tramos en el trabajo de gabinete se ha consolidado la información recogida de los conteos, se obtuvieron los resultados de los

volúmenes de tráfico en la vía, por día, tipo de vehículos en los tramos indicados E1,E2, E3, muestra los resultados directos del conteo de tráfico diario de vehicular con un IMDA promedio de 86 veh./día, según el Diseño Geométrico de Carreteras -2014, no alcanza la características geométricas requeridas, se confirma que corresponde a un tipo de camino vecinal de TROCHA CARROZABLE, por lo tanto según los resultados se realizara un diseño de mejoramiento de la subrasante con over o con material de cantera piedroso, debido a que en la zona resume y filtra el agua. El mejoramiento se realizará en sus ámbitos periódicos, emergenciales, con una calzada de ancho mínimo de 4.00 m. con ensanches a cada 500 m.

Según la proyección de tráfico vehicular, pasaría a la carretera de tercera clase un IMDA mayores a 200 veh./dia, el mejoramiento y la rehabilitación a nivel afirmado de 0,20m. a 0,30m. de la misma forma obras de arte significativas y ampliaciones de plataforma en zonas citicas. Con ancho de calzada de 3,50 m. a 5,50 m.

3.3. Estudio de mecánica de suelos

Geográficamente el Distrito de Agallpampa, Provincia de Otuzco se encuentra ubicada en la zona andina de la Libertad, entre las coordenadas Geográficas UTM WGS 84: 770544.00 E, 9116844.00 N y altitud de 3129.00 msnm, abarca una superficie de 258,56 km². Presenta un relieve que está atravesado por la cordillera central de los andes, de sur a norte en forma irregular formado por cerros, ríos, quebrada, llanuras, mesetas y valles

en los tramos a ejecutarse en posterior se ha identificado son de suelos arcillosos, arenosos y gravas con relleno de arena fina y arena limosa, Los suelos presentes en el distrito provienen de variado material parental, la estructura y textura también es variada y el nivel de fertilidad está relacionada con la intensidad en la explotación y por su ubicación en zonas de laderas, fuertemente erosionadas por el agua y otros agentes.

En referente al clima es de tipo seco, desértico y sin lluvias durante el invierno.

♦ Perfil Estatigrafico del Terreno:

Durante el proceso de investigación se ha Excavado las calicatas que se puede observar en el talud como va cambiando las características físicas del terreno, como tamaño de los granos que conforman el material, el color, observa también si el terreno contiene humedad. las muestras se clasificarán, en todos los casos de acuerdo al Sistema Unificado de Clasificación de Suelos - SUCS NTP 339.134 (ASTM D 2487) y los resultados de esta clasificación serán comparados con la descripción visual - manual NTP 339.150 (ASTM D 2488). Se detalla número de calicatas:

TABLA Nº 19: Numero de Calicatas

N. DE		COORDENADA	S UTM WGS84	COTA
CALICATA	PROGRESIVAS (KM)	NORTE	ESTE	TERERRENO
C.N'1	0+500.00	N: 9125304,040	E: 779555.702	3498,000
C.N°2	0+618.50	N: 9125231.126	E: 779644.249	3489.000
C.N"3	1+500.00	N: 9124574.541	E: 780082.809	3414.000
C.Nº4	2+452.00	N: 9124335.467	E: 780610,569	3318.000
C.N*5	2+500.00	N: 9124351.880	E: 780654.967	3321.000
C.N*6	3+233.37	N: 9124871.497	E: 781015.826	3399.000
C.N*7	3+500.00	N: 9124939.600	E: 781258.133	3390.000
C.N-8	3+630.00	N: 9125049.184	E: 781281.062	3422.000
C.N-9	4+500.00	N: 9116922.080	E: 773936.149	3053.000
C.N'10	4+640.00	N 9125816.036	E: 781672.837	3485,000
C.N°11	5+500.00	N: 9125690.095	E: 781625.818	3458.000
C. N° 12	5+770.00	N 9126613.710	E 782128.104	3508.000
C. N° 13	6+500,00	N: 9125361.127	E: 782079,597	3483.000
C.Nº 14	7+500.00	N: 9127134.003	E: 782341.044	3554.000
C. Nº 15	8+500.00	N: 9128037.090	F: 782739.082	3591.000
C. Nº 15	10+500.00	N: 9129135.436	E: 783507.040	3484.000
C.Nº 17	11+227.00	N 9129333,479	E 783763,944	3536.000
C. N' 18	11+500.00	N: 9129470.129	E: 783803.150	3561.000
C.N-19	12+500.00	N: 9128629.790	E: 784246.040	3578.000
C.Nº 20	13+500.00	N: 9127908.964	E: 784845.787	3615.000
C.N°21	14+055.00	N 9127938.678	E 785368.363	3570.000
C.N°22	14+500.00	N: 9127952.914	E: 785605.279	3592.000
C.N°23	15+500.00	N: 9127319.566	E: 786019.254	3666.000
C.N° 24	16+500.00	N: 9126836.997	E: 786661.543	3738.000
C . N° 25	17+500.00	N: 9127083.454	E: 787593.532	3760.000
C.N°26	18+370.00	N 9127535,416	E 788262.117	3770.000
C.N*27	18+500.00	N: 9127538.453	E: 788387,282	3774.000

Fuente: Elaboración propia

FIGURA Nº 06: Fotografía de calicatas

Fuente: Elaboración propia

En el ensayo de laboratorio Se ha realizado según los parámetros según la normatividad las siguientes actividades:

- El Contenido de Humedad Natural según la Norma ASTMD 2216
- Peso específico según la norma ASTM D 854.
- Contenido de sales solubles según la Norma ASTM NTP 339.152.
- Análisis granulométrico por tamizado según Norma ASTM D 422,
- Compactación del suelo.
- Límite de plasticidad

Ensayo de laboratorio

Las muestras extraídas en campo fueron llevadas al laboratorio con el objetivo de determinar sus propiedades físicas y mecánicas.

TABLA Nº 20: Propiedades físicas y mecánicas de suelo

Contenido de Humedad	NTP 339.127	ASTM D2216
Análisis Granulométrico	NTP 339.128	ASTM D422
Limite Liquido y L. Plástico	NTP 339.129	ASTM D4318
Peso específico	NTP 339,131	ASTM D854
Clasificación Unificada de Suelos(SUCS)	NTP 339.134	ASTM D2487
Ensayo de Proctor Modificado	NTP 339.141	ASTM D1557
C. B. R.	MTC E-132	ASTM D- 1883
Contenido de Sales Solubles	NTP 339.152	B S 1377
Contenido de Cloros solubles en suelos y A.S/T	NTP 339.177	AASHTO T291
Contenido de Sulfatos solubles en suclos y A.S/T	NTP 339.178	AASHTO T290

Según el análisis químico de sales agresivas al concreto

TABLA N° 21: Análisis químicos de espectometría

cuando el ion cloruro sea mayor de 0,2% o cuando el ion cloruro en contacto cimentación en el agua sea mayor de 100ppr debe de recomendar las medidas de protección necesarias.							NTP 400.014 NTP 339.076	
FUENTE:NTE E.050 SUELOS Y	SIMI	ENTACIO						
	NEOU	NETOS PARA CO	TABLA 4 A NUMBRO EXPUESTO A	POLUCIONES	DE BULFARO	10		
	positión a suffidens	in fizo sovere on igue (30.) primente an el oscio, percentige en pene	Sulfato (SIO _A) em el eguis, poro	Tgo de Camaneo	Pool ecolor resistante ago, modernal operantigati (mi presed pe um stratega - preso memory	pars pars domenates de pesso		
ins	geficante	0.0 e 30 ₄ < 0.1	0 4 BOL< 150	-	-	-		
) And	oderants*	0.1 x 90, < 0.2	198 # 80, < 1981	A. P(MB), 10:4050 P(MS), IdMIGMS), IdMIGMS)	0.80	28		
	Severa	42 ESD, < 2,0	1990 ± 50. + 10100	٧	9.66	31		
54	y severe	10 4 804	10000 < 50.	Tipe V miss pulsels se ¹¹⁸	0.48	31		
FUENTE: NORMA E.060 CONC	RETO	ARMA	DO	-		NT-A	STM-D516	

NOTA:

en este caso basándose a las fuentes mostradas anteriormente (e.050 y e.060).

según los estudios realizados en laboratorio de suelos tenemos que el porcentaje de cloruros entre las tres calicatas realizadas varian de 0.10% - 0.12%; lo cual podemos decir que el porcentaje de cloruros es menor que 0.2%(proporciona la E.050; NTP 400.014 y NTP 339.076), según esta comparación este porcentaje está en una condición aceptable, lo cual no afectara a los cimientos que se están proyectando en dicha edificación.

Tomando referencia lo que nos hace mención en la norma técnica E.0.60, lo cual brinda valores permisibles y limites que un concreto expuesto debe estar a soluciones de sulfato.

Obtenidos los valores del nivel existente de sulfatos en el terreno donde se va realizar el proyecto (0.11% a 0.14%), producto de los resultados en laboratorio podemos decir que el terreno en donde se va a realizar el proyecto, la existencia de sulfatos es insignificante.

Clasificación de suelos

Viene a ser el estudio sobre el tamaño de y la distribución de los granos del suelo. Existen 4 formas más conocidas de clasificación de granulometría de los suelos en nuestro caso utilizaremos el:

TABLA N° 22: Sistema unificado de clasificación de suelos

SISTEMA UNIFICADO DE CLASIFICACIÓN DE SUELOS- SUCS

	Divisiones	mayores	Símbolo del grupo	Nombre del grupo	
Suelos granulares gruesos	Grava	grava limpia menos del 5% pasa el	GW	grava bien graduada, grava fina a gruesa grava pobremente graduada	
retenido en el tamiz nº200 (0.075 mm) fracci reten nº4 (> 50% de la fracción gruesa retenida en el tamiz nº4 (4.75 mm)	tamiz n°200	GP		
		grava con más de 12% de finos	GM	grava limosa	
		pasantes del tamiz nº 200	GC	grava arcillosa	
	Arena ≥ 50% de fracción gruesa que pasa el tamiz nº4		sw	Arena bien graduada, arena fina a grucsa.	
		Arena limpia	SP	Arena pobremente graduada	
		Arena con más de 12% de finos	SM	Arena limosa	
		pasantes del tamiz nº 200	SC	Arena arcillosa	
Suelos de grano fino	limos y arcillas		ML	limo	
más del 50% pasa el tamiz No 200	limite líquido < 50	inorgánico	CL	arcilla	
9,000,000		orgánico	OL	Limo orgánico, arcilla orgánica	
	limo y arcilla	inorgánico	MH	limo de alta plasticidad, limo elástico	
	limite líquido ≥ 50	morganico	CH	Arcilla de alta plasticidad	
		orgánico	OH	Arcilla orgánica, Limo orgánico	
Suclos altamen	ite orgánicos		TURBA	Pt	

[&]quot;DISEÑO SISMORRESISTENTE

PARAMETROS PARA EL DISEÑO DEL PAVIMENTO

Criterios de calidad de suelo según su clasificación, de los resultados de ensayo del laboratorio se puede concluir que las muestras ensayadas presentan una alta susceptibilidad al colapso.

Para tal caso utilizo la fórmula para determinar el criterio del estado del suelo según el índice de consistencia.

Esta apreciación corresponde a determinar el estado del suelo mediante el valor del índice de consistencia, el cual corresponde a la diferencia entre el

Limite Liquido y el contenido de la Humedad, todo dividido por el índice de plasticidad.

TABLA N° 23: Índice de consistencia

Índice	de	Características
Consistencia		
< 0.00		El Suelo es semilíquido
0.00 - 0.25		Semi liquido
0.25 - 0.50		Plástico muy Blando
0.50 - 0.75		Plástico Blando
0.75 - 1.00		Plástico Duro
> 1.00		Estado Sólido

Fuente: Elaboración propia

Según los resultados el suelo es trabajable si es que presenta un índice de consistencia mayor a la Unidad, los suelos que presentan un Índice de consistencia menor a la Unidad presenta mayor dificultad para ser compactados, presentado problemas de acolchonamiento.

De los resultados del laboratorio se puede apreciar de las muestras ensayadas NO presentan condiciones de adecuadas para ser trabajas, por lo que se requiere su mejoramiento.

Criterios de contenido de humedad del suelo y su comportamiento

El proceso de compactación depende de varios factores:

- Naturaleza del suelo.
- Método de compactación.

CONCLUSIONES Y RECOMENDACIONES

- De los datos obtenidos en el laboratorio para la cimentación se recomienda que la capacidad admisible de carga para cimentación de muros, cimentación para puentes y pontones, carga de alcantarillas, se detalla en anexo.
- Según el análisis de suelo, en el laboratorio muestra que se requiere zonas el mejoramiento con OVER los tramos indicados, así mismo la

existencia de humedad, filtraciones que aflora en la superficie de rodadura, es por lo visto que la sub rasante requiere mejorar con un 0,40 m. con material over.

• A lo largo del tramo materia del presente proyecto vial se distinguen principalmente el afloramiento de rocas intrusitas del tipo dacítico en stock, en forma de franjas y alineados, en el área que corresponde a la jurisdicción del Distrito de Agallpampa se presenta la mineralización, con la presencia de rocas metamórficas y cuarcitas ; a mayor escala se encuentran rocas sedimentarias, calizas, areniscas, así como lutitas en mayor y menor grados de intemperismo, originando suelos residuales del tipo arcilloso en diferentes coloraciones, presentando estas características y litología en casi todo el tramo de la vía que comprende el presente estudio

TABLA N° 24: Zonas de mejoramiento

ZONAS DE MEJORAMIENTO CON OVER INICIO 03+960.00 MEJORAMIENTO OVER 0.40 cm FIN 04+000.00 INICIO 05+725.00 MEJORAMIENTO OVER 0.40 cm FIN 05+810.00 INICIO 11+880.00 MEJORAMIENTO OVER 0.40 cm FIN 11+920.00

Fuente: Elaboración propia

TABLA N° 25: Muros de contención a proyectar

MURO DE CONTENCION MC-01 TRAMO 01	INICIO	FIN	LONGITUE
MURO DE CONTENCION MC-01 TRAMO 01	1+980	2+020	40.00
MIDO DE CONTENÇIONANO AL TRAMO AL	INICIO	FIN	LONGITUD
MURO DE CONTENCION MC-01 TRAMO 02	2+080	2+260	180.00
MURO DE CONTENÇION MO OL ERAMO OL	INICIO	FIN	LONGITUD
MURO DE CONTENCION MC-01 TRAMO 03	2+360	2+400	40.00
MUDO DE CONTENCION ME AL TRAMO SA	INICIO	FIN	LONGITUD
MURO DE CONTENCION MC-01 TRAMO 04	2+940	3+040	100.00
MATERIAL DE CONTENICIONA ME AL VERANCO AS	INICIO	FIN	LONGITUD
MURO DE CONTENCION MC-01 TRAMO 05	3+160	3+180	20.00

Fuente: Elaboración propia

TABLA N° 26: Número de pontones

RELACION DE PONTONES						
Item	PROGRESIVAS (KM)	OBRA DE ARTE A PROYECTAR	CLAVE	DISEÑO	LONGITUD (m)	
1	2+452.00	Ponton 01	Ponton	Tipo losa	5.50 m. x H = 4.50	
2	3+233.17	Ponton 02	Ponton	Tipo losa	5.00 m. x H = 2.50	
3	14+065.00	Ponton 03	Ponton	Tipo losa (solo superestructura)	5.00 m. x H = 2.50	

Fuente: Elaboración propia

Según R.D. N° 09-2016-MTC, Manual de puentes, MTC Manual de diseño de puentes (2003). Una alcantarilla se considera de 1.00 m hasta 3.00 m. de luz. Un pontón se considera de una longitud de luz de 3.00 m. hasta menores de 10.00 m. de luz; en referente a los puentes se considera una longitud de 10.00 m. de luz a más longitudes.

Según el inventario de puentes y pontones, en la municipalidad distrital de Agallpampa, se ha encontrado información como puente con una longitud de luz de 5.50, por lo visto según el manual de puentes, no estaría considerado como puente, por lo tanto, se recomienda a corregir y actualizar datos.

Asimismo, se ha proyectado 06 muros de contención debido a que requieren en los tramos.

El cálculo hidráulico

Según el manual de hidrología, hidráulica y drenaje, se ha considerado el diseño para establecer las dimensiones mínimas de la sección para las alcantarillas a proyectar, según la formula a tomar en consideración de Robert Manning para canales abiertos y tuberías.

$$V = \frac{R^{2/3}S^{1/2}}{n}$$
$$R = A/P$$
$$Q = VA$$

Donde:

Q: Caudal (m³/s)

V: Velocidad media de flujo (m/s)

A: Área de la sección hidráulica (m²)

P: Perímetro mojado (m)

R: Radio hidráulico (m)

S: Pendiente de fondo (m/m)

n: Coeficiente de Manning (Ver Tabla Nº 09)

En tal sentido

se ha encontrado alcantarillas en mal estado, y su respectiva

proyección de alcantarillas una cantidad considerable de 15 alcantarillas.

TABLA N° 27: Total de alcantarillas

ltem	PROGRESIVAS (KM)	OBRA DE ARTE A PROYECTAR	CLAVE	SECCION PROYECTADA
1	0+980.00	ALCANTARILLA Nº 01 TMC	TMC 36*	D=36" L=5.40m
2	3+141.20	ALCANTARILLA Nº 02 TMC	TMC 48"	D=48° L=5.40m
3	4+140.00	ALCANTARILLA N° 03 TMC	TMC 24*	D=24" L-5.40m
4	4+740.00	ALCANTARILLA Nº 04 TMC	TMC 48*	D=48" L=5.40m.
5	6+225.00	ALCANTARILLA Nº 05 TMC	TMC 24"	D=24* L=5.40m.
6	6+880.00	ALCANTARILLA Nº 06 TMC	TMC 24°	D=24" L=5.40m.
7	11+058.00	ALCANTARILLA Nº 07 TMC	TMC 36"	D=36* L=5.40m.
8	11+630.00	ALCANTARILLA Nº 08 TMC	TMC 48"	D=48* L=5.40m.
9	12+790.00	ALCANTARILLA Nº 09 TMC	TMC 24"	D=24* L=5,40m.
10	14+520.00	ALCANTARILLA Nº 10 TMC	TMC 24"	D=24" L=5.40m.
11	15+060.00	ALCANTARILLA Nº 11 TMC	TMC 24*	D=24" L=5.40m.
12	16+010.00	ALCANTARILLA Nº 12 TMC	TMC 24"	D=24" L=5.40m
13	16+790.00	ALCANTARILLA Nº 13 TMC	TMC 24"	D=24" L=5.40m.
14	17+590.00	ALCANTARILLA Nº 14 TMC	TMC 24°	D=24" L=5.40m.
15	18+620.00	ALCANTARILLA Nº 15 TMC	TMC 24"	D=24* L=5.40m.

Fuente: Elaboración propia

3.4. Estudio hidrológico

El estudio hidrológico se ha estimado las descargas máximas, a partir de un análisis de frecuencia de las precipitaciones máximas en 24 horas registradas en la estación pluviométrica ubicada en el área adyacente a la zona del proyecto. Por lo tanto, el estudio hidrológico comprende, el cálculo de caudales máximos de diseño para obras de drenaje

Mediante el presente estudio se especificará aquellos aspectos hídricos relevantes para el diseño de la trocha carrozable, no se dispone de información pluviométrica cercana, sin embargo, se tiene información pluviométrica meteorológica de 03 estaciones, así como: Estación Julcán, Estación Quiruvilca y Estación Otuzco su información histórica esta

discontinuada. La Estación de Otuzco, es la más próxima a la cuenca en estudio y servirá para analizar el comportamiento hidrológico de la cuenca. La afluencia del agua en los caminos, carreteras influye en el tipo de diseño, debido a que ocasiona alteraciones en el compactado del suelo, por lo visto el límite de plasticidad debería sr lo mínimo, por lo tanto, requiere que la afluencia de agua debe estar direccionada en alcantarillas, según el diseño, estas cuencas tienen una gradiente pronunciada de 5.8%, a lo largo de su mayor longitud, de igual manera las pendientes de las márgenes son altas, estando la margen izquierda cerca del 12%. Se detalla las estaciones:

DATOS GENERALES DE LAS ESTACIONES METEOROLOGICAS CERCANAS A LA ZONA DEL PROYECTO.

TABLA N° 28: Estaciones meteorológicas

Estación	OTUZCO –	Estación	QUIRUVILCA –	Estación	JULCAN -
	000361		154102		154101
Tipo	CONVENCION	Tipo	CONVENCION	Tipo	CONVENCION
	AL -		AL –		AL –
	METEREOLOG		METEREOLOG		METEREOLOG
	ICA		ICA		ICA
Latitud	7° 54' 1"	Latitud	8° 0' 15.2"	Latitud	8° 2' 32.23"
Longitud	78° 34' 1"	Longitud	78° 18' 28.48"	Longitud	78° 29' 9.85"
Altitud	2660.00 msnm	Altitud	4047.00 msnm	Altitud	3385.00 msnm
Departame	LA LIBERTAD	Departame	LA LIBERTAD	Departame	LA LIBERTAD
nto		nto		nto	
Provincia	OTUZCO	Provincia	SANTIAGO DE	Provincia	JULCAN
			CHUCO		
Distrito	OTUZCO	Distrito	QUIRUVILCA	Distrito	JULCAN

Fuente: Senamhi

Meteorología

Para el presente estudio se ha considerado la información regional de estaciones meteorológicas del **SENAMHI** más cerca de la ZONA del Proyecto. La estación proporcionada es la de Otuzco.

Precipitación Pluvial

La precipitación se origina de masas de aire de tipo tropical, provenientes de la cuenca del Caballo Moro, los cuales son elevados por los vientos ocasionando la pluviosidad en la zona. El régimen de precipitaciones es estacional registrándose los valores más altos en octubre a marzo

originando el denominado periodo de lluvias coincidente con el periodo de avenidas o creciente de ríos.

TABLA N° 29: Precipitación mensual estación Otuzco

PRECIPITACIÓN MENSUAL DE LA ESTACIÓN OTUZCO

Año	ENE.	FEBR.	MARZO	ABRIL	MAYO	JUNIO	JULIO	AGOST.	SEPT.	OCTUB.	NOVIEM.	DICI.
1980	10.6	46	21.3	15.6	5.5	3.5	Т	3.8	2.1	29.2	26.6	S/D
1981	15.5	23.7	13	S/D	S/D	S/D	S/D	S/D	24	30.8	17.6	21.6
1982	27.6	30.7	20.6	41.4	14	9.2	3.6	3.4	11	49.1	19.5	28
1983	24.4	13	38.2	31.1	11.7	14.4	11	14.5	7.5	17.5	5.4	20.6
1984	16.1	35.2	29.4	21.1	25.7	13.3	4.5	5.8	9.8	32.9	36.5	19.5
1985	5.1	15.7	21.8	30.6	21.2	18.5	2.3	2.4	21.5	20	12.6	18.8
1986	23.3	S/D	S/D	S/D	S/D	S/D	7.2	12.4	17.5	10.6	15.9	27
1987	35.2	28.7	29.7	34.3	6.5	10	5.3	5.5	9.6	12.1	35.7	37.5
1988	21.5	15.4	18.2	24.2	17.2	7.1	8.3	1.8	10.6	17.1	15.1	22.8
1989	19.3	23.8	36.2	25.2	20	6.7	0	3.1	20.1	18.2	35.8	0
1990	33.5	24.6	4.4	16.2	7.5	14	1.2	T	20.1	28.6	20.4	9.2
1992	S/D	S/D	S/D	S/D	7.6	15.3	2.1	12.8	23.8	21.5	8.3	25.4
1993	21	21.5	26.3	22.5	11.3	0	8.9	1.2	20.8	18.1	30.5	22.2
1994	15.5	52.2	25.5	30	7.5	2.7	2.5	12	7.5	21.3	32.6	27.1
1995	15	37.6	13.7	39.2	11.9	7.9	2.5	0.9	3.3	24.1	26.6	18.1
1996	11.1	34.7	20.7	14.3	6.2	2.8	1.4	4.9	9.8	24.3	14.4	20.2
1997	24.7	23.8	30.8	9.3	16.3	6.1	0	12.8	26	35.1	23.1	33.5
1998	25.4	35.7	29.1	11.8	9.1	6.4	0.8	3.9	5.9	19	24.6	8.9
1999	28.2	49.4	24.2	10.8	12.9	17.3	1.1	3.9	19.3	10.9	34.1	22.4
2000	30.5	32.1	23	12.1	22.1	12.4	2.1	8.4	9.6	16.6	14.6	19.5
2001	22.3	19.3	29.6	5.7	11.1	2.5	3.7	0.6	5.5	31.9	20.8	34
2002	20.6	16.9	27	20.9	13.2	5.7	7.7	0	11.4	22.7	25.7	31.2
2003	16.4	18	24	21.1	4.9	5.9	2.6	7.2	14.2	18.6	24.8	19.2
2004	13.6	14.4	12.1	15.2	8.3	1.3	10.9	10.4	12.4	21	43.3	13.2

Fuente: SENAMHI

Caudal de Diseño

Los flujos máximos debidos a precipitaciones descendiendo desde las laderas adyacentes fueron calculados utilizando el método racional, dada la poca extensión de las áreas de drenaje.

El concepto básico de **Método Racional**, asume que el máximo porcentaje de escurrimiento de una cuenca pequeña ocurre cuando la intensidad de tal

cuenca está contribuyendo el escurrimiento y que el citado porcentaje de escurrimiento es igual a un porcentaje de la intensidad de lluvia promedio. Lo anterior en forma de ecuación resulta:

$$Q = 0.278 * C * I * A$$

Donde:

Q: Caudal de diseño en m3/seg.

C: Coeficiente de escorrentía.

I: Intensidad de la Lluvia en mm/hr.

A: Área de la cuenca en Km²

En base a las características físicas del área drenante se determinó que el coeficiente de escurrimiento **C =0.50**

CAUDALES UNITARIOS PARA DIFERENTES PERIODOS DE RETORNO.

TABLA N° 30: Proyección de Caudales unitarios

C=	0.500		
Aap=	1	[ha]	
TR	I	Q unit.	Q unit.
años	mm/Hr	m3/seg	Lts/seg/ha
2	33.87	0.047	47.05
5	39.75	0.055	55.21
10	44.19	0.061	61.37
25	50.06	0.070	69.53
50	54.51	0.076	75.71
100	58.95	0.082	81.88
200	63.39	0.088	88.04
1000	73.71	0.102	102.38

Fuente: Elaboración propia

3.5. Estudio ambiental

El estudio ambiental desde el punto de vista, se tiene como finalidad de contribuir al desarrollo sostenible, el departamento de la Libertad

EFECTOS AMBIENTALES

a. Efectos sobre el suelo

- Incremento de la erosión del suelo, será producido por el deterioro del suelo debido a la eliminación de la cobertura vegetal, el paso de las personas y vehículos en el área; así mismo, por la eliminación de la cobertura vegetal; los mismo que producirán un aumento de arrastre de sedimentos por efectos de la rotura de la capa superficial del suelo.
- Otros efectos relacionados son las pérdidas de la micro fauna y la microflora del suelo, que contribuyen a la descomposición de la materia orgánica.

b. Efectos sobre el agua

- Aumento de la toxicidad del agua, a consecuencia de la descomposición de la vegetación eliminada, agotará los niveles de oxígeno en el agua. Esto afecta la vida acuática causando la modificación de los niveles trópicos acuáticos, causando la desaparición de algunos eslabones de la cadena trófica de los ecosistemas acuáticos, ocasionando la muerte o disminución de las poblaciones. Los productos de la descomposición anaeróbica incluyen el sulfuro de hidrogeno, que es nocivo para los organismos acuáticos y el metano que es un gas invernadero. El principal gas que se produce es el dióxido de carbono que aumenta los riesgos de invernadero. La producción de algas impide la navegación, la pesca y aumenta las pérdidas de agua por transpiración.
- Puede lavar los lechos, aguas abajo. La sedimentación del reservorio produce una mejor calidad de agua para el riego y consumo industrial y humano.

c. Efectos sobre la Flora

Pérdida del hábitat de la flora, como consecuencia de la alteración de las condiciones naturales donde se desarrollan las especies de la flora, por las acciones del proyecto tales como, la eliminación de la cobertura vegetal, puede ocasionar la muerte o modificación en los patrones de ocupación. A

- causa de la alteración de hábitat natural pueden desaparecer especies de un valor potencial genético de uso para la medicina y alimentos.
- Pérdida de la capacidad de regeneración de especies nativas, debido a la modificación de sus condiciones naturales, muchas especies alterarán sus mecanismos de producción modificando sus tasas de regeneración, que pueden causar su desaparición.

d. Efectos sobre la Fauna

- Migración de la fauna, se producirá como efecto del cambio de las condiciones normales para su desarrollo o disminución de sus alimentos, permitiendo movilización de la fauna a otras áreas.
- Perdida de Hábitat de las especies por la alteración de la flora nativa que se removerá para la construcción de la trocha.

e. Efectos sobre la Población

- Generación de empleo, debido al mayor requerimiento de mano de obra para las labores del proyecto, permitiendo un aumento del poder adquisitivo de los habitantes.
- Incremento de la migración de la población, se incrementará los movimientos migratorios hacia la zona y se disminuirá la migración de los pobladores locales hacia otras zonas. El proyecto producirá un ingreso de operadores del sistema, trabajadores agrícolas y personas que establecerán servicios en el área del proyecto. También se producirá un incremento del intercambio comercial.
- La actividad agrícola producirá una reactivación en el área que aumentará la construcción de los sectores agrícolas secundarios, agroindustria y servicios. Otros efectos relacionados será un incremento en la ocupación y utilización del territorio, ocasionando una revaloración de los terrenos, aumento de los servicios de salud, educación, asistencias técnicas y vías de comunicación.

TABLA Nº 31: Consideraciones de Diseño

DESCRIPCION	CARACTERISTICAS
Clasificación	Según Normativa DG.2014 camino vecinal corresponde a una trocha Carrozable.
Velocidad Directriz	De 20 a 30 Km. / horas
Radio Mínimo Normal	30 m.
Radio Mínimo Excepcional	15 m. (puentes)
Radio Curva de Volteo	9 m
Peralte Mínimo	6 %
Pendiente Máximo normal	8 %
Pendiente Mínima	0.50 %
Pendiente Máxima	9 %
Pendiente Máxima Excepcional	12 %
Ancho de Superficie de Rodadura	4.00 m. (tramos en tangente)
Sobreancho	4.00 m. (tramos en tangente)
Bombeo	3.0 % para caso de afirmado
Ancho de Afirmado	4.78 m (en Subrasante y con talud H:V 1.5:1 terminan en rasante con ancho de calzada
Espesor de afirmado Estabilizado	0.25 m. compactado
Espesor de Mejoramiento en terreno blando.	0.40 m. solo por tramos definidos en el estudio.

Fuente: DG-2014

IV. DISCUSIÓN

- ✓ El estudio básico de ingeniería nos permite a determinar con mayor facilidad las necesidades y alternativas de nuestra propuesta adecuada según los parámetros establecidos.
- ✓ Los muros de contención servirán para el mejoramiento y evitar deslizamientos de la vía como también se podrá utilizar en zonas donde no habrá sobre ancho siendo el caso.
- ✓ Los puentes o pontones de concreto armado la buena dosificación y el buen armado del acero con la determinación básica para efectuar la construcción del puente.
- ✓ Los problemas sociales son también temas de discusión ya que nos genera un atraso y paralización de la obra donde se debe evitar anticipadamente para no generar pérdidas.

V. CONCLUSIONES

- Según los resultados, durante el proceso de recojo y procesamiento de datos
 con el conteo de tráfico vehicular se ha obtenido un promedio de IMD de 86
 veh/dia según el DG corresponde Trocha Carrozable, por lo que no alcanza
 según las características geométricas, según el cálculo de proyección,
 llegaría a carretera de tercera clase, en su posterior sería una vía asfaltada.
- Durante el levantamiento topográfico se ha intervenido el tramo de una trocha carrozable camino vecinal un total de 19, 371.38 metros los cuales se intervenido en dos tramos, en lo cual se ha identificado una topografía del terreno accidentada, ondulada, pendientes que varían entre 15° y 25°, y en algunos casos hasta 45°, los cuales se han corregido con la compensación en el trabajo de gabinete.
- En referente al estudio de mecánica de suelos, y estudio geológico El distrito de Agallpampa está atravesado por la cordillera central de los andes, de sur a norte en forma irregular formado por los cerros, ríos, quebradas, llanuras, mesetas y valles, Según el estudio, se ha determinado que el terreno es variable, un suelo grueso suelto, en algunas partes roca fija. El sustrato rocoso está compuesto en parte por andesitas y en su mayor parte por areniscas, conglomerados, limolitas y arcillitas, escasas zonas con esquistos y pizarras, limo arcillitas, rocas intrusivas alteradas de la Cordillera Occidental, montañas con laderas de moderada a suave pendiente, laderas estructurales, y lomadas muy disectadas con fin de pavimentación.

.

 Con respecto al estudio hidrológico se ha identificado 3 cuencas, se ha estimado un cálculo de caudal unitario de diseño para un periodo de retorno de 50 años, para el diseño de obras de arte como alcantarillas del camino vecinal, es de 75.71Lts/seg./Ha.

- Con respecto al estudio ambiental se determinado un Plan de Manejo Ambiental que conlleve la ejecución de acciones de prevención y/o control ambiental como son las medidas de mitigación ambiental, así como la ejecución de un Programa de Seguimiento y Vigilancia y la implementación de un Plan de Contingencias.
- Según los resultados obtenidos se ha propuesto realizar el diseño de acuerdo DG-2014, y análisis de tráfico vehicular, corresponde realizar mejoramiento y rehabilitación de los caminos vecinales la morada, tres ríos, cruce uruchual, caballera y Alfonzo Ugarte, con un Subrasante a nivel afirmado con Over o con material de cantera piedra ya que en las zonas de donde resume y filtra el agua, como los lugares donde son nacientes de agua se debe de evacuar para no malograr la Plataforma y evitando asentamientos posteriores. Así mismo se proyectado mejorar alcantarillas.
- Se ha Diseñado según la normatividad un espesor del afirmado para la capacidad de soporte. 0.25 m. compactado, considerando los aspectos climatológicos. Se propone como una base estabilizada para este tipo de carretera, lo llamamos base estabilizada a los componentes que lo conforman lo que es el cemento el aditivo (aceite sulfatado). Se ve una capa mejorada resistente a el transito liviano.
- Finalmente se calculado un costo estimado de S/ 13, 529,255.60 nuevos soles como propuesta de solución en su posterior ejecución.

RECOMENDACIONES

- ✓ Se debe tener en cuenta las obras de arte cumpliendo los parámetros de diseño establecidos en el manual de hidrología del MTC.
- ✓ Haciendo una proyección del tráfico total confirman que al hacerse
 proyecciones del trafico diferenciado por tipos de vehículos en los casos
 de bajos volúmenes de transito no conlleven incrementos en los cálculos,
 por lo tanto, para caminos con bajo volúmenes de tránsito se puede
 prescindir de realizar este tipo cálculos. El índice medio diario obtenido para
 el diseño del pavimento es IMD = veh/día.
- ✓ El estudio de señalización se debe de realizar para poder colocar de manera estratégica las señales informativas de las zonas urbanas del proyecto, asimismo señales reglamentarias de velocidad de diseño así poder disminuir los accidentes de tránsito.
- ✓ Se considera el mejoramiento de la calzada en dos tramos, la construcción de una base granular de afirmada, y mejoramiento con material Over en diferentes tramos afectados por humedad si en el caso estuviera o se diera el evento de vertientes o nacimientos de agua.

BACH. MAMANI MAMANI BONIFACIO
BACH. FLORES GALLEGOS JOHN FRANCISCO

REFERENCIAS BIBLIOGRÁFICAS

- Cárdenas, G. (2014). Diseño geométrico de carretera. Colombia.
- Calidonio, E.D., Meléndez, C.B., Carrillo, S. J. (2010) Diseño de mezcla suelo agregado-emulsión como alternativa para mejoramiento de caminos de bajo volumen de tránsito. Tesis pregrado. Universidad de el Salvador, Santa Ana, El Salvador.
- Esquivel, K. (2014). Diseño Para el Mejoramiento de la carretera vecinal tramo Chulite-Rayambara-La Soledad, Distrito de Quiruvilca y Santiago de Chuco, Provincia De Santiago De Chuco Departamento La Libertad. Tesis pregrado. Universidad Cesar Vallejo, Trujillo, Perú
- Ferreyra, J. (2012). Actividades de mantenimiento rutinario y periódico en una carretera del Perú. Tesis de maestría. Universidad de Piura, Piura, Perú.
- Gutiérrez, A. (2002). Vías terrestres. Universidad tecnológica de los andes.
- Rodríguez, E. & Gutiérrez, J. (2012): "Análisis de vulnerabilidad de redes de Carreteras mediante indicadores de accesibilidad y SIG: Intensidad y polarización de los efectos del cierre de tramos en la red de carreteras de Mallorca, Madrid, España.
- Ministerio de Transportes y Comunicaciones. (2014). *Diseño Geométrico* de *carreteras*. Lima, Perú.
- Ministerio de Transportes y Comunicaciones. (2016). Manual de puentes. Lima Perú.
- Ministerio de Transportes y Comunicaciones. (2011). *Manual de hidrología, hidráulica y drenaje.* Lima Perú.
- Salas R, (2008). Análisis de estrategias tarifarias para la gestión de la movilidad en Carreteras metropolitanas. Barcelona.

ANEXOS

PANEL FOTOGRAFICO DEL LUGAR. - PANEL FOTOGRAFICO -

Vista panorámica en las condiciones de la trocha Carrozable que se encuentra en la actualidad, como se puede observar las inundaciones a causa de las lluvias son constantes, ya que se requieres ser atendida de inmediato

Vista panorámica de la trocha Carrozable donde es inaccesible el pase de dos vehículos por lo que se necesita un mejoramiento de las vías de los caminos vecinales.

Vista panorámica donde se puede apreciar los radios de curvatura no cumples con los diseños óptimos de las carreteras.

Vista panorámica de las cunetas de la trocha Carrozable en donde no hay pendientes adecuadas para poder evacuar las lluvias.

MECANICA DE SUELOS

LABORATORIO DE INGENIERIA WBG

Ing. Wilser Briones Gallardo C.I.P. No 22269

Estudios de Suelos con Fines de Camousción, para Edificacionos, Correteras, Pantos y Obras de Arte, Brolleaniones de Concreto, Morclas Arfâlticas y Logistica de Control de Calidad

2.0.- INVESTIGACIONES EFECTUADAS.

2.1.- TRABAJOS DE CAMPO RELACION DE CALICATAS

Se han tomado muestras de cada una de las calicatas que se han excavado para así determinar sus características físicas. Luego estas muestras, con los cuidados respectivos, fueron traidas al Laboratorio, por el Consultor, para determinar sus propiedados características

N°DE			COORDENADA	COTA		
CALICATA	PROGRESTVAS (MM)		MORTE		ESTE	TEREBRENO
C-N-3	0+500.00	N	9125304.040	81	779555.707	3499.000
C.N'2	0+618.50	N:	9125231.126	81	779644,249	3489.000
C.N°3	1+500,00	N	9124574.541	U	780082.809	3414.600
C.N'4	2+452.00	N	9124335.467	1	780610.569	3318.000
C.8'5	2+500.00	N:	9324351,880	t:	780654.967	3373,000
C.N'S	3+753.37	*	9824871,497	0	749015.824	3399.000
C.N'7	3+500.00	20	9124539.600	1:	788258.333	(3190,000)
C.N'B	3+630.00	N:	11,25049.184	6:	781281.062	3472.600
C.N' 9	4+500.00	N:	3116922.080	6;	777996-349	.805.3.000
C: N' 10	4+640.00	19	2125816.036	4	782672.837	3485.000
C.Nº 11	5+500.00	N.	9125690.095	f:	918.25818	3458.000
C.N° 12	54770.00	19	9526613.750	0	782129.104	ISOS 000
C.N°18	8+500:00	10.	9636961.327	£.	782679.567	3483.000
C.N°14	7+500:00	N:	9177134-009	В.	762341.044	3554.000
C.Nº 15	8+340.00	N.	9126057.090	16	762739.062	3591,000
C.N'16	10+500,00	N	9129135.436	8	783507.040	9494.000
C.N'37	11+227/00	4	9129333,479	6	783763.944	3536,000
C.W 18	11+500:00	N:	9129470.129	10	783803.150	1561,000
C.W19	12×500.00	14:	9128629.700	ti:	764246.040	3578,000
C. N° 20	13+500.00	10	9127908.964	1:	784845.787	1615-000
C.N'21	\$4+055.00	N	9127938.678	1	795368.363	83.70.000
C. Nº 22	14+500,00	N	9127952.914	\$1	785605.279	2582.000
C.N'23	15+500.00	N	9127319.566	t:	789019.254	3566.000
C. Nº 24	16+500.00	M:	9126836,997	t:	780661.543	1718.000
£. W'25	17+500.00	N:	9127083.454	1:	787593.532	1760,000
C. Nº 36	38+370.00	N	3127535.416	t	788252.117	3770.000
C.W 17	28+500.00	No.	9127518.453	6:	768387,262	3774.000

AGUAS SUB TERRÁNEAS.-Existen afloramientos de agos que ocusicoan acamalaciones, pozas y charcos que invaden toda la plataforma de la carretera.

RESOLUCION DE INDECOPI Nº 024971-2016/DSD-INDECOPI

Urb. Santa Maria - Colle Cabuide Nº 411 Travillo - Telf.: 949823808 - 949823878

Ing. Wilser Briones Gallardo C.I.P. No 22269

Extedius de Soules em Fines de Cimuntación, para Edificaciones, Carretorne, Fuestes y Obras de Arie, Desificaciones de Concreto, Mesclas Adiábicos y Logistica de Control de Calidad

4.-PARAMETROS PARA EL DISEÑO DEL PAVIMENTO

CRITERIOS DE CALIDAD DESUELO SEGÚN SU CLASIFICACION:

El Mecanismo de Colapso, se origina cuando en situaciones de precipitaciones y que superficialmente se seca por efecto del calor, se produce un efecto cíclico, en el cual durante el proceso de humedecimiento hay una disminución de la concentración de iones, por lo tanto se produce la dispersión, causando la disminución de la resistencia al corte en la estructura del sucloA pesar de las distintas teorías, la susceptibilidad al colapso punde evaluarse cualitativamente, basadas en las propiedades físicas como la relación de vacios, deusidad seca, contenido de humedad, porosidad, límites de consistencia, cantidad de sales solubles, entre otras.

Normalmente no evaluan el petencial d colapso ni su magnitud.

En la Formula desarrollada, si el Índice de Liquidez, está muy próximo a la unidad nos indica que el suelo presenta una consistencia muy corcana a la que corresponde su limite.

Si es mayor a la Unidad nos indica que el suelo se encuentra saturado en estado platico a semiliquido, siendo muy propenso al colapso por asentamientos, hundimientos y acolchonamientos.

De los resultados de los ensayos del Laboratorio se puede concluir de las muestras ensayadas presentan una altu nusceptibilidad al colapso.

CRITERIO DEL ESTADO DEL SUELO SEGÚN EL INDICE DE CONSISTENCIA:

Kw - (LP. - Wa)/LP

Libertina School

RESOLUCION DE INDECOPI Nº 024971-2016/DSD-INDECOPI

Urb. Sunta Maria - Callo Cabaido Nº 411 Trapillo + Telf. : 949823808 + 949823878

LABORATORIO DE INGENIERIA WBG

Ing. Wilser Briones Gallardo C.I.P. No 22269

Extedios de Surius con Flore de Comuntación, para Edificaciones, Carretaros, Puestes y Obras de Ario, Buillicaciones de Concepto, Mescho Antiticos y Legistica de Control de Colidad

Esta apreciación corresponde a determinar el estado del suelo mediante el valor del Indice de Consistencia, el cual corresponde a la diferencia entre el Limite Liquido y el contenido de Humedad, todo dividido por el Índice de Plasticidad.

Este Indice pude ser tomado como una medida de la consistencia del suelo, relacionada con la cantidad de agua que es capaz de absorber

Indice de Consistencia	Características
< 0.00	El Suelo es semiliquido
0.00 - 0.25	Semi liquido
0.25 - 0.50	Plastico muy Illando
0.50 - 0.75	Plástico Blando
0.75 - 1.00	Plástico Duro
> 1.00	Estado Sólido

Un suelo será trabajable si es que presenta un indice de consistencia mayor a la Unidad, los suelos que presentan un Índice de Consistencia menor a la Unidad presentan mayor dificultad para ser compactados, presentando problemas de acolchonamiento.

De los resultados del Laboratorio se puede apreciar de las muestras ensayadas no presentan condiciones adecuadas para ser trabajadas, por lo que se requiere su Mejoramiento.

CRITERIO DE CONTENIDO DE HUMEDAD DEL SUELO Y SU COMPORTAMIENTO.

El proceso de compactación depende de varios factores:

Naturaleza del auelo.

Método de compactación.

Mary I draw Gellards

RESOLUCION DE INDECOPI Nº 024971-2016/DSD-INDECOPI

Urb. Santa Maria - Calle Cabaide Nº 411 Trigillo - Telf : 949823808 - 949823878

LABORATORIO DE INGENIERIA

Ing. Wilser Briones Gallardo C.I.P. No 22269

Estudios de Suelas que Fines de Cimentación, para Edificaciones, Carestores, Paestes y Obras de Arte, Desificaciones de Concreto, Mesolas Asfabicacy Logistics de Cantrol de Calidad

6.0.- CONCLUSIONES Y RECOMENDACIONES:

6.1.-Datos obtenidos para la cimentación:

DETERMINACION DE LA CAPACIDAD ADMISIBLE DE CARGA

CIMENTACION PARA MUROS

				Qud	5.	Df	В	Cost	Coef.
Cabcata Nº	Otra projectada		SUCS	Kated	(m)	(10)	(a (b)	Friends	Delete
C-4	1+980 A 2 +020	C. Rectungular	SM			15	260	0.85	1.11
Km	2+080 A 2 +260			0.98	0382				
2 + 452	2+360 A 2 + 400								
C- 4	2+940 A 3 +040				0.98 0.281	281 15			1.11
Km	3+160 A 3 + 180	C. Romangalar	SM	0.98			160	0.35	
3+233.57	3+290 A 3 + 300		100	1000				1000	3-100

CIMENTACION PARA PUENTES Y PONTONES

		DESCRIPCI ON	SUCS	Qail	Sir	Df	18	Coof.	Coef.
Calicate Nº	Otea proyectuda			Kg/cm2	(on)	(m)	(i) (m)	Princió n	Bakesto
C-47Ms	Puente de losa	Romania	in SM	SM 6.98	6.281	1.5	180	4.35	1.11
2 + 452	2+452								
C-4 /km	Panton III de losa	C	31/1	0.96	0.291	15	140	0.15	111
3+233.37	3 + 233.37	Rectangula		0.500					
C-221 km	Ponton 02 de losa	Sc construirs la loss (Saparumunus)						1	1
14+520	14+065	500			N				

RESOLUCION DE INDECOPI Nº #24971-2016/DSD-INDECOPI

Urb. Santa Meria - Calle Cabaido Nº 411 Trupillo - Telf.: 949823806 - 949823878

Ing. Wilser Briones Gallardo C.I.P. Nº 22269

Estudios de Sueloz con Fines da Camentación, para Edificaciones, Carreturos, Popules y Obras de Arte, Desificaciones de Cancroto, Merclas Aufálticas y Lagónica de Castrol de Calidad

CAPACIDAD ADMISIBLE DE CARGA DE ALCANTARILLAS

N°	PROGRESIVAS	OBRADE ARTE A	sucs	Qud	56	Df	n	Coef	Coef
-	(MN)	PROYECTAR	300.5	Kg/cm2	(08)	(m)	(0.70)	Fricción	Biskesto
1	0+980,00	ALCANTABLLA N° DI TMC	SM	0.97	0.271	15	1.5	0.35	1.11
2	3+141.70	ALCANTARILLA N° 02 TMC	5M	0.96	0.260	1.5	1.5	0.95	1.11
3	4+140.00	ALCANTARILLA N° 03 TNIC	SM	0.92	0.241	1.5	1.5	0.85	1.11
4	4+740.00	NICANTARELA Nº 04 TMC	SM	0.90	9.232	1.5	1.5	0.33	1.11
5	6+225.00	ALCANTARILLA Nº DE TMC	594	0.92	0.241	1.5	1.5	0.35	1.11
6	6+890.00	ALCANTARILIA N° 06 TMC	SMI.	0.92	0.241	1.5	1.5	0.25	1.11
7	11+058.00	ALCANTABILIA N° 07 TMC	SM	0.89	0.227	1.5	1.5	0.35	1.11
8	11+630.00	ALCANTARLLA Nº DE TINC	SM	0.93	0.246	1.5	1.5	0.35	1.11
9	12+790.00	ALCANTABILLA N° DE TMC	SM.	0.90	6.237	1.5	1.5	0.35	1.11
10	14+520.00	ALCANTABILIA N° 30 TMC	350	0.91	0.297	1.5	1.5	0.35	1.11
11	15+060,00	ALCANTARILLA Nº 33 TMC	SM	0.90	0.232	1.5	1.5	0.35	1.11
12	16+010.00	ALCANTABILLA Nº 12 TMC	101	0.95	0.261	1.5	1.5	0.35	1.11
13	16+790.00	AUCANTABILLA N° 13 TMC	554.	0.95	0.261	1.5	1.5	0.35	1.11
14	17+590.00	ALCANTARILLA N° 34 TMC	SM	0.97	0.271	1.5	1.5	0.35	1.11
15	18+620.00	ALCANTABILLA N° 35 TMC	SM	0.91	0.237	1.5	1.5	0.35	1.11

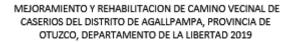
RESOLUCION DE INDECOPI Nº 024971-2016/DSD-INDECOPI

Urb. Santa Maria - Calle Cultuide No 411 Trujille - Telf. 949823808 - 949823878

Estudios de Sactos con Flocs de Comentación, para Edificaciones, Carreterza, Passon y Obras de Arte, Dasificaciones de Concreto, Mexican Additicas y Legistica de Control de Calidad

ZONAS DE MEJORAMIENTO CON OVER

MEJORAMIENTO OVER 0.40 cm	INICIO	03+960.00	
MEANAMIENTO OVER CAUCIE	FIN	04+000.00	
MEJORAMIENTO OVER 0.40 cm	INICIO	05+725.00	
MEJORAMIENTO OVERCOAUCIII	FIN	05+810.00	


MEJORAMIENTO OVER 0.40 cm	INICIO	11+880.00
MEJORAMIENTO OVER 0.40 cm	FIN.	11+920.00

CAPACIDAD ADMISIBLE DE CARGA DE ALCANTARILLAS

N°	PROGRESIVAS (KM)	OBRA DE ARTE A PROYECTAR	sucs	Qad Kg/cm2	Si (cm)	Df (m)	B (c m)	Coef. Pricción	Coef. Balasto
1	0+980.00	ALCANTARLLA N° EL TNIC	SM	0.97	0.271	1.5	1.5	0.35	1.31
2.	3+141.20	ALCANTABILLA N° 62 TMC	SM	0.96	0.266	1.5	1.5	0.35	1.11
3	4+140.00	ALCANTARILLA N° 01 TMC	SM	0.92	0.241	1.5	1.5	0.35	1.11
4	4+740.00	ALCANTABILIA N° 04 TMC	SM	0.90	0.232	1.5	1.5	0.35	1.11
\$	6+225.00	ALCANTARILLA Nº 55 TMC	SM	0.92	0.241	1.5	1.5	0.35	1.11
6	6+680.00	ALCANIANILA N° 96 TMC	SM	0.92	0.241	1.5	1.5	0.35	1.11
7	11=058.00	ALCANTARILLA N° 07 TIME	SM:	0.89	0.227	1.5	1.5	0.33	1.11
8	11+630.00	ALCANTABILIA N° 08 TIVIC	SM	0.99	0.246	1.5	1.5	0.35	1.11
\$	12+790.00	ALCANTABILLA N° 09 TMC	SM	0.90	0,232	1.5	1.5	0.35	1.11
10	144520.00	ALCANTABILLA N° 30 TMC	SM	0.91	0.237	1.5	1.5	0.35	1.11
11	15+060.00	ALCANTARULA N° 11 TRAC	SM	0.90	0.232	1.5	1.5	0.35	1.11
12	16+010.00	ALCANTARILIA N° 12 TMC	SM	0.95	0.261	15	3.5	0.35	1.11
13	16+790.00	ALCANTARELA N° 13 TMC	SM	0.95	0.261	15	3.5	0.85	1.11
14	17+590.00	ALCANTABILIA N° 14 TMC	SM	0.97	0.271	1.5	1.5	0.85	1.11
15	18+620.00	ALCANTARILIA N° 15 TMC	5M	0.91	0.237	1.5	1.5	0.35	111

The state of the s

RESOLUCION DE INDECOPI Nº 024971-2016/DSD-INDECOPI Urb. Santa Maria – Callo Cobuide Nº 411 Trujillo - Telf.: 940823808 - 949823878

Estudies de Saeles uns Fines de Cimentación, para Edificaciones, Carreteras, Pacetes y Obras de Arte, Bosificaciones de Concreto, Mesclas Aufalticas y Logistica de Concret de Colidad

TRAMOS PARA EJORAMIENTO

MEJORAMIENTO OVER 0.40 cm	INICIO	03+960.00	
MEJORAMIENTO OVER U.40 EM	FIN	04+000.00	
***********	INICIO	05+725.00	
MEIORAMIENTO OVER 0.40 cm	FIN	05+810.00	

	INICIO	11+880.00
MEJORAMIENTO OVER 0.40 cm	FIN	11+920.00

MOTA, EN LOS TRAMOS INDICADOS EN EL CUADRO ANTERIOR EXISTE HUMEDAD, FILTRACIONES QUE AFLDRA EN LA SUPERFICIE DEL RODADURA. RAZON POR LO QUE ESTA MEJORANDOSE LA SUBRASANTE CON 8.46M DE MATERIAL. OVER. INFORMACIÓN TECNICA PRESENTADA POR LA MUNICIPALIDAD DE AGALLPAMPA

400

RESOLUCION DE INDECOPI Nº 024971-2016/DSD-INDECOPI

Lirb. Santa Maria - Calle Cahuide Nº 431 Trigillo - Telf.: 949823808 - 949823878

PUNTOS TOPOGRAFICOS

PUNTO	ESTE	NORTE	ELEVACION	DESCRIPCIO
1	783236.57	9128692.58	3481.41	BM
2	783299.39	9128667.89	3482.56	CS
3	783296.23	9128662.41	3482.82	CS
4	783304.14	9128657.93	3482.90	CS
5	783302.25	9128653.21	3484.75	PT
6	783294.07	9128658.75	3484.22	CR
7	783289.62	9128650.30	3484.31	CR
- 8	783289.43	9128649.82	3484.09	CU
9	783289.99	9128648.66	3485.37	TN
10	783285.20	9128640.81	3486,61	TN
11	783248.84	9128660.95	3484.79	TN
12	783255.25	9128669.67	3483,41	TN
13	783255.92	9128669.86	3482.26	CU
14	783256.25	9128670.58	3482.56	CR
15	783260.75	9128679.88	3482.30	CR
16	783261.74	9128680.94	3481.58	TN
17	783264.97	9128685.74	3480.77	TN
18	783236.57	9128692.57	3481.38	BM
19	783223.82	9128688.04	3480.62	CU
20	783223.66	9128687.77	3481.66	TN
21	783224.14	9128688.72	3480.78	CB
22	783227.60	9128696,69	3480.86	CR
23	783218.51	9128678.69	3482.93	TN
24	783228.83	9128699.09	3479.74	TN
25	783233.03	9128709.48	3478.83	TN
26	783189.72	9128703.40	3478.78	CU
27	783190.02	9128704.13	3479.02	CR
28	783193.06	9128710.84	3479.00	CR
29	783189.37	9128702.74	3479.54	TN
30	783193.97	9128702.74		TN
31	783183.38		3478.09 3480.82	TN
32	783197.87	9128693.65		TN
33	783177.81	9128721.97	3477.41	CR
34	783177.81	9128720.23 9128714.13	3478.44 3478.41	CR
				CU
35	783173.34	9128713.50	3478.19	
36 37	783173.13	9128712.79	3479.02	TN CR
	783169.74	9128730.92	3478.08	
38	783169.26	9128705.80	3480.17	TN
39	783163.67	9128725.93	3478.01	CR
40	783162.71	9128725.25	3477.85	CU
41	783162.12	9128724.79	3478.50	TN
42	783157.12	9128734.13	3477.80	CU
43	783156.70	9128733.97	3477.66	CU
44	783163.76	9128739.63	3477.77	CR
45	783155.92	9128733.57	3478.41	TN
46	783165.19	9128740.73	3476.79	TN
47	783171.22	9128745.85	3475.73	TN

49	783149.98	9128745.50	3477.50	CR
50	783156.97	9128748.72	3477.56	CR
51	783158.73	9128749.75	3476.73	TN
52	783148.80	9128744.82	3478.21	TN
53	783165.63	9128759.28	3475.28	TN
54	783144.97	9128750.97	3477.03	CU
55	783145.46	9128751.41	3477.22	CR
56	783150.64	9128757.69	3477.44	CR
57	783144.18	9128750.44	3478.05	TN
58	783153.41	9128759.61	3476.43	TN
59	783158.98	9128767.92	3475.43	TN
60	783140.80	9128753.73	3476.65	CU
61	783141.04	9128754.31	3476.92	CR
62	783146.05	9128763.42	3477.33	CR
63	783140.79	9128753.04	3477.97	TN
64	783148.33	9128766.74	3476.61	TN
65	783152.63	9128773.61	3475.85	TN
66	783129.43	9128766.56	3476.56	A2
67	783339.61	9128642.37	3484.70	CS
68	783334.81	9128637.26	3484.88	CS
69	783342.21	9128630.49	3484.91	CS
70	783329.95	9128633.08	3486.00	CR
71	783326.24	9128627.29	3486.01	CR
72	783333.08	9128635.25	3485.45	TN
73	783325.91	9128626.67	3485.83	CU
74	783325.40	9128625.49	3486.65	CU
75	783319.49	9128617.56	3487.90	TN
76	783356.30	9128607.59	3486.70	CR
77	783350.26	9128601.88	3486.75	CR
78	783348.93	9128600.56	3486.41	CU
79	783338.05	9128592.40	3488.29	TN
80	783358.76	9128607.20	3486.08	TN
81	783366.49	9128613.90	3485.02	TN
82	783348.07	9128598.29	3486.88	TN
83	783439.20	9128570.73	3489.67	
84	783276.19	9128669.71	3483.37	A1
85	783368.12	9128581.98	3486.88	CU
86	783368.63	9128582.63	3487.40	CR
87	783367.46	9128580.91	3487.61	TN
88	783361.66	9128573.75	3488.39	TN
89	783376.77	9128587.77	3487.34	CR
90	783378.10	9128588.86	3486.68	TN
91	783384.00	9128595.74	3485.87	TN
92	783380.83	9128571,93	3487.54	CU

100	783394.27	9128564.75	3488.35	CR		151	783503.81	9128623.37	3490.47	CR
101	783397.69	9128572.22	3488.20	CR	1	152	783496.80	9128625.84	3490.22	CR
102	783393.14	9128562.81	3488.41	TN	1	153	783505.68	9128629.49	3490.25	PYB
103	783399.29	9128575.12	3487.63	TN	-	154	783498.12	9128627.94	3490.04	PYB
104	783389.35	9128555.08	3489.25	TN		155	783511.37	9128637.44	3490.43	PT
105	783404.37	9128584.19	3486.98	TN		156	783500.83	9128639.68	3490.49	CR
106	783409.87	9128557.73	3488.42	CU		157	783507.10	9128638.64	3490.45	CR
107	783410.08	9128559.10	3488.91	CR		158	783498.48	9128640.73	3490.52	CS
108	783413.06	9128567.89	3488.81	CR		159	783492.49	9128640.83	3490.37	CS
109	783414.56	9128581.51	3487.55	TN		160	783492.64	9128649.83	3490.47	CS
110	783405.05	9128547.58	3489.49	TN		161	783570.76	9128833.21	3497.38	
111	783422.35	9128556.61	3488.87	CU		162	783517.08	9128674.51	3491.06	CU
112	783422.21	9128558.29	3489.36	CR		163	783516.01	9128674.95	3491.25	CR
113	783422.95	9128566.94	3489.02	CR		164	783517.81	9128673.61	3492.03	TN
114	783423.52	9128572.74	3488.35	TN		165	783508.46	9128675.82	3491.30	CR
115	783420.59	9128546.03	3489.81	TN		166	783528.01	9128668.86	3492.26	TN
116	783425.01	9128584.41	3487.71	TN		167	783505.60	9128676.32	3490.42	TN
117	783434.54	9128558.08	3489.10	CU		168	783498.11	9128681.01	3490.19	TN
118	783433.72	9128559.83	3489.67	CR		169	783526.37	9128706.68	3491.29	CU
119	783430.76	9128568.27	3489.35	CR		170	783525.78	9128706.73	3491.43	CR
120	783435.31	9128557.57	3489.42	TN		171	783517.89	9128709.42	3491.43	CR
121	783431.52	9128572.60	3488.65	TN		172	783514.87	9128710.10	3490.48	TN
122	783434.05	9128588.17	3488.01	TN		173	783526.95	9128707.11	3491.95	TN
123	783444.92	9128548.57	3490.63	TN		174	783508.34	9128713.69	3490.17	TN
124	783434.15	9128569.33	3489.49	CR		175	783531.09	9128705.99	3492.07	TN
125	783437.43	9128561.04	3489.80	CR		176	783525.83	9128740.98	3490.71	CR
126	783462.07	9128559.37	3490.68	CS		177	783533.34	9128738.90	3490.61	CR
127	783465.01	9128570.15	3490.72	CS		178	783523.13	9128742.15	3490.58	TN
128	783458.81	9128567.83	3490.61	CS		179	783534.59	9128738.57	3491.93	TN
129	783460.36	9128581.66	3490.16	CR	\Box	180	783515.28	9128745.50	3490.43	TN
130	783463.78	9128574.25	3490.34	CU	\sqcup	181	783537.88	9128730.79	3492.38	TN
131	783463.69	9128575.21	3490.54	CR	\sqcup	182	783538.06	9128751.61	3490.04	CR
132	783458.48	9128586.93	3489.32	TN	\sqcup	183	783531.08	9128755.40	3490.17	CR
133	783454.01	9128595.85	3488.81	TN	L	184	783526.17	9128758.40	3490.41	TN
134	783478.70	9128579.87	3490.33	CU	LI	185	783518.69	9128766.87	3490.50	TN
135	783477.90	9128581.21	3490.66	CR	\sqcup	186	783540.83	9128744.46	3491.88	TN
136	783472.64	9128588.80	3490.32	CR	\sqcup	187	783540.00	9128752.75	3491.40	TN
137	783484.69	9128573.07	3491.12	TN	\vdash	188	783529.54	9128764.84	3490.27	PT
138	783481.07	9128596.34	3490.32	CR	\vdash	189	783543.53	9128757.64	3491.00	TN
139	783488.97	9128588.22	3490.41	CU	⊢	190	783538.03	9128765.44	3489.67	CR
140	783488.14	9128589.28	3490.62	CR	⊢⊹	191	783546.85	9128755.15	3491.07	TN
141	783489.16	9128608.06	3490.41	CR		192	783544.49	9128759.72	3489.49	CR
142	783496.71	9128600.16	3490.16	CU		193	783546.33	9128760.90	3490.84	TN TN
143	783495.53	9128600.92	3490.59	CR		194	783531.34	9128774.68	3489.15	PT
144	783486.43	9128609.54	3489.54	TN	\vdash	195	783527.70	9128784.48	3488.85	<u> </u>

4950	781603.05	9125548.47	3438.60	izq
4951	781590.81	9125597.19	3440.67	izq
4952	781590.09	9125603.78	3440.93	izq
4953	781594.38	9125631.47	3442.06	izq
4954	781600.36	9125646.75	3442.72	izq
4955	781623.98	9125691.31	3444.79	izq
4956	781638.23	9125709.56	3445.74	izq
4957	781651.08	9125732.48	3446.84	izq
4958	781668.95	9125778.53	3448.90	izq
4959	781670.05	9125790.82	3449.45	izq
4960	781665.96	9125805.11	3450.05	izq
4961	781670.17	9125817.31	3450.51	izq
4962	781681.26	9125823.06	3450.95	izq
4963	781698.57	9125819.43	3451.62	izq
4964	781728.14	9125803.16	3453.01	izq
4965	781732.44	9125801.72	3453.22	izq
4966	781766.29	9125795.67	3454.65	izq
4967	781775.81	9125795.67	3455.06	izq
4968	781792.37	9125796.88	3455.76	izq
4969	781823.70	9125805.47	3457.12	izq
4970	781835.37	9125810.30	3457.66	izq
4971	781865.16	9125832.14	3459.19	izq
4972	781909.79	9125855.07	3461.25	izq
4973	781930.59	9125863.96	3462.19	izq
4974	781937.53	9125868.75	3462.57	izq
4975	781947.12	9125883.02	3463.30	izq
4976	781969.61	9125927.33	3465.36	izq
4977	781973.13	9125935.85	3465.94	izq
4978	781994.22	9125970.76	3467.63	izq
4979	782011.62	9126017.56	3469.68	izq
4980	782018.02	9126025.63	3470.08	izq
4981	782052.36	9126047.63	3471.75	izq
4982	782057.10	9126051.45	3472.03	izq
4983	782059.35	9126056.54	3472.31	izq
4984	782059.35	9126062.04	3472.58	izq
4985	782046.22	9126083.71	3473.63	izq
4986	782046.47	9126088.12	3473.77	izq
4987	782058.88	9126136.50	3475.81	izq
4988	782064.95	9126176.91	3477.50	izq
4989	782066.92	9126186.04	3477.87	izq
4990	782071.12	9126198.84	3478.45	izq
4991	782067.27	9126216.98	3479.22	izq
4992	782071.40	9126234.13	3479.92	izq
4993	782086.40	9126281.88	3481.99	izq
4994	782100.85	9126329.91	3484.06	izq
4995	782104.19	9126342.99	3484.66	izq
4996	782100.71	9126350.55	3485.07	izq

5202	779501.47	9125351.37	3512.02	der
5203	779518.05	9125336.13	3509.65	der
5204	779543.65	9125315.13	3506.09	der
5205	779554.39	9125302.30	3504.28	der
5206	779572.71	9125280.05	3501.24	der
5207	779591.34	9125270.67	3499.06	der
5208	779622.83	9125255.82	3495.29	der
5209	779632.45	9125244.86	3493.67	der
5210	779648.15	9125219.04	3490.42	der
5211	779648.26	9125218.85	3490.20	der
5212	779658.08	9125202.71	3490.15	der
5213	779668.28	9125174.42	3490.08	der
5214	779671.30	9125156.09	3490.03	der
5215	779677.43	9125106.08	3489.91	der
5216	779688.42	9125056.91	3489.79	der
5217	779694.01	9125007.60	3489.67	der
5218	779698.87	9124970.15	3489.58	der
5219	779704.69	9124957.28	3489.55	der
5220	779718.08	9124935.29	3489.49	der
5221	779735.09	9124921.01	3489.44	der
5222	779735.49	9124920.68	3489.42	der
5223	779736.75	9124919.61	3489.32	der
5224	779745.32	9124919.31	3488.51	der
5225	779762.47	9124926.83	3486.44	der
5226	779784.17	9124922.39	3483.96	der
5227	779805.70	9124915.67	3481.46	der
5228	779810.54	9124911.37	3480.68	der
5229	779814.36	9124905.33	3479.83	der
5230	779815.75	9124894.53	3478.57	der
5231	779808.68	9124857.65	3474.52	der
5232	779812.60	9124845.07	3473.17	der
5233	779821.04	9124831.82	3471.54	der
5234	779830.05	9124824.64	3470.36	der
5235	779852.42	9124816.70	3467.76	der
5236	779882.01	9124776.23	3462.18	der
5237	779927.23	9124756.04	3456.85	der
5238	779949.14	9124737.00	3453.64	der
5239	779960.69	9124719.99	3451.42	der
5240	780000.71	9124690.63	3446.08	der
5241	780013.80	9124680.25	3444.22	der
5242	780017.71	9124672.42	3443.19	der
5243	780020.43	9124650.08	3440.74	der
5244	780022.11	9124646.13	3440.37	der
5245	780050.40	9124626.84	3436.68	der
5246	780057.00	9124616.76	3435.32	der

5563	782584.36	9128447.55	3535,37	der
5564	782584.95	9128459.63	3533.88	der
5565	782592.46	9128486.21	3530.65	der
5566	782605.58	9128534.30	3524.87	der
5567	782614.13	9128565.45	3521,15	der
5568	782615.38	9128583.44	3519.08	der
5569	782619.03	9128633.33	3513.00	der
5570	782621.57	9128662.29	3509.87	der
5571	782624.69	9128670.68	3508.75	der
5572	782631.65	9128678.09	3507.49	der
5573	782643.59	9128685.29	3505.87	der
5574	782650.24	9128691.60	3504.90	der
5575	782652.91	9128701.19	3503.83	der
5576	782653.15	9128706.19	3503,31	der
5577	782651.17	9128713.65	3502.48	der
5578	782648.09	9128719.56	3501.73	der
5579	782628.01	9128762.15	3496.24	der
5580	782627.28	9128764.53	3495.93	der
5581	782618.29	9128813.96	3490.13	der
5582	782592.82	9128857.27	3484.34	der
5583	782576.19	9128884.97	3480.48	der
5584	782569.21	9128900.99	3478.44	der
5585	782560.80	9128919.41	3476.12	der
5586	782548.21	9128935.88	3473.70	der
5587	782545.50	9128943.30	3472.69	der
5588	782546.43	9128948.53	3471.96	der
5589	782549.28	9128953.12	3471.24	der
5590	782553.06	9128955.70	3470.60	der
5591	782553.24	9128955.79	3470.06	der
5592	782560.23	9128956.92	3470.15	der
5593	782574.15	9128955.75	3470.31	der
5594	782584.26	9128958.60	3470.43	der
5595	782603.81	9128964.54	3470.68	der
5596	782611.96	9128965.57	3470.78	der
5597	782620.40	9128964.23	3470.89	der
5598	782629.90	9128959.11	3471.02	der
5599	782641.76	9128950.72	3471.19	der
5600	782649.46	9128943.93	3471.32	der
5601	782662.26	9128923.21	3471.61	der
5602	782674.36	9128898.55	3471.94	der
5603	782680.41	9128888.17	3472.07	der
5604	782689.03	9128881.22	3472.20	der
5605	782707.25	9128866.77	3472.48	der
5606	782711.25	9128858.42	3472.59	der
5607	782716.21	9128842.91	3472.79	der
5608	782732.30	9128795.45	3473.38	der
5609	782738.63	9128776.68	3473.61	der

5610	782741.39	9128771.25	3473.68	der
5611	782747.12	9128764.95	3473.87	der
5612	782754.41	9128760.45	3473.97	der
5613	782762.18	9128756.83	3474.07	der
5614	782808.40	9128735.67	3474.67	der
5615	782815.41	9128733.85	3474.75	der
5616	782822.20	9128734.22	3474.82	der
5617	782829.21	9128737.78	3474.90	der
5618	782846.93	9128748.97	3475.16	der
5619	782854.27	9128749.02	3475.25	der
5620	782904.55	9128745.78	3475.84	der
5621	782951.77	9128762.89	3476.43	der
5622	782959.89	9128765.23	3476.53	der
5623	783000.80	9128766.50	3477.02	der
5624	783040.15	9128766.81	3477.49	der
5625	783050.48	9128765.75	3477.61	der
5626	783085.70	9128750.08	3478.07	der
5627	783097.26	9128749.12	3478.20	der
5628	783106.54	9128751.00	3478.31	der
30001	783276.21	9128669.70	3483.36	R-BM1
30002	783276.21	9128669.70	3483.33	R-BM1
100001	783276.21	9128669.70	3483.41	GD-BM1
100002	783236.57	9128674.57	3481.35	GD-BM2

	CUADRO DE	BM'S MOR	ADA - UG	ARTE
BM	ESTE	NORTE	ELEV.	UBICACIÓN
BM-1	779182.57	9125629.56	3551.52	ROCA
BM-2	779578.83	9125286.67	3501.48	PISTA
BM-3	779805.03	9124908.76	3480.48	ROCA
BM-4	780089.88	9124579.25	3431.77	ARBOL
BM-5	780350.28	9124340.80	3367.03	ARBOL
BM-6	780746.09	9124348.24	3326.67	ROCA
BM-7	780979.96	9124679.14	3361.31	ROCA
BM-8	781278.52	9124971.74	3404.16	ROCA
	CUADRO DE	BM'S MOR	ADA - UG	ARTE
BM	ESTE	NORTE	ELEV.	UBICACIÓN
BM-9	781539.71	9125272.71	3427.71	ROCA
BM- 10	781673.25	9125771.88	3449.14	ARBOL
BM- 11	782056.15	9126056.14	3472.24	ROCA
BM- 12	782078.97	9126371.94	3486.61	ARBOL
BM-	782302.89	9126794.45	3524.38	ARBOL
BM-	782341.94	9127119.78	3548.86	ROCA
BM- 15	782508.15	9127597.48	3574.68	ROCA
BM- 16	782743.65	9128061.25	3603.61	ROCA
BM- 17	782709.74	9128293.92	3558.50	ROCA
BM- 18	782645.60	9128697.32	3504.62	ROCA
	CUADRO DE	BM'S MORA	ADA – UG	ARTE
BM	ESTE	NORTE	ELEV.	UBICACIÓN
BM- 23	783619.82	9129371.18	3518.75	ROCA
BM- 24	783802.81	9129479.04	3576.36	ROCA
BM- 25	784020.69	9128975.15	3578.67	ROCA
BM- 26	784242.97	9128642.64	3582.43	ARBOL

BM- 27	784584.20	9128369.52	3594.78	ROCA
BM- 28	784869.10	9127891.91	3622.87	ARBOL
BM- 29	785284.32	9127922.00	3574.60	ROCA
BM- 30	785603.02	9127970.95	3609.26	ROCA
BM- 31	785778.38	9127699.15	3650.85	ROCA
BM- 32	786013.88	9127320.00	3690.25	ARBOL
	CUADRO DE	BM'S MORA	ADA – UG	ARTE
ВМ	ESTE	NORTE	ELEV.	UBICACIÓN
BM- 33	786297.20	9126889.08	3725.39	ARBOL
BM- 34	786713.61	9126818.31	3753.28	ROCA
BM- 35	787143.48	9126987.42	3771.41	ROCA
BM- 36	787582.36	9127081.90	3778.97	ROCA
BM- 37	788045.69	9127334.72	3789.51	ROCA
BM- 38	788403.34	9127525.10	3791.49	ROCA
BM- 39	788548.81	9127848.04	3812.98	ARBOL

TABLA DE ELEMENTOS DE CURVA

	TABLA DE ELEMENTOS DE CURVA														
N°	DIRECCION	DELTA	R.DE	LONG.SUB	LONG.	LONG.	DIST.	DIST. ORDENADA	PTO. DE	PTO.INIC.	PTO.	NORTE	ESTE		
CURVA			CURVA	TANGENTE	CURVA	CUERDA	EXTERNA	MEDIA	INTERSECCION	CUERDA	TANG.				
PI:1	S56° 25' 46"E	11°09'48"	200.00	19.55	38.97	38.91	0.95	0.95	0+148.30	0+128.76	0+167.72	9125547.87	779315.99		
PI:2	S42° 27' 03"E	16°47'39"	100.00	14.76	29.31	29.21	1.08	1.07	0+260.00	0+245.24	0+274.55	9125477.27	779402.71		
PI:3	S54° 02' 36"E	39°58'45"	30.00	10.91	20.93	20.51	1.92	1.81	0+296.82	0+285.91	0+306.84	9125446.59	779423.44		
PI:4	S49° 04' 41"E	49°54'36"	30.00	13.96	26.13	25.31	3.09	2.80	0+339.28	0+325.32	0+351.45	9125434.66	779465.12		
PI:5	S37° 26' 09"E	26°37'31"	30.00	7.10	13.94	13.82	0.83	0.81	0+428.07	0+420.98	0+434.92	9125351.99	779502.14		
PI:6	S43° 36' 01"E	14°17'46"	30.00	3.76	7.49	7.47	0.23	0.23	0+486.91	0+483.15	0+490.63	9125314.60	779547.90		
PI:7	S52° 10' 51"E	31°27'25"	30.00	8.45	16.47	16.26	1.17	1.12	0+529.96	0+521.51	0+537.98	9125279.94	779573.50		
PI:8	S51° 17' 13"E	33°14'40"	30.00	8.96	17.41	17.16	1.31	1.25	0+585.03	0+576.07	0+593.48	9125259.07	779624.92		
PI:9	S28° 41' 41"E	11°56'24"	120.00	12.55	25.01	24.96	0.65	0.65	0+635.11	0+622.56	0+647.56	9125217.47	779653.69		
PI:10	S14° 12' 53"E	17°01'13"	90.00	13.47	26.74	26.64	1.00	0.99	0+680.16	0+666.69	0+693.42	9125175.83	779671.13		
PI:11	S9° 15' 29"E	7°06'25"	90.00	5.59	11.16	11.16	0.17	0.17	0+738.78	0+733.20	0+744.36	9125117.30	779676.98		
PI:12	S9° 09' 04"E	7°19'15"	150.00	9.60	19.17	19.15	0.31	0.31	0+806.70	0+797.10	0+816.27	9125051.06	779692.04		
PI:13	S17° 28' 27"E	23°58'00"	60.00	12.74	25.10	24.92	1.34	1.31	0+887.74	0+875.01	0+900.11	9124970.36	779699.80		
PI:14	S39° 09' 13"E	19°23'31"	30.00	5.13	10.15	10.11	0.43	0.43	0+926.42	0+921.30	0+931.45	9124936.36	779719.00		
PI:15	S85° 50' 55"E	73°59'54"	15.00	11.30	19.37	18.05	3.78	3.02	0+955.55	0+944.25	0+963.62	9124917.12	779741.01		
PI:16	N81° 02' 38"E	47°47'01"	15.00	6.64	12.51	12.15	1.41	1.29	0+977.32	0+970.67	0+983.18	9124930.69	779762.02		

	TABLA DE ELEMENTOS DE CURVA														
N°	DIDECCION	DELTA	R.DE	LONG.SUB	LONG.	LONG.	DIST.	DIST. ORDENADA	PTO. DE	PTO.INIC.	PTO.	NODTE	FCTF		
CURVA	DIRECCION	DELTA	CURVA	TANGENTE	CURVA	CUERDA	EXTERNA	MEDIA	INTERSECCION	CUERDA	TANG.	NORTE	ESTE		
PI:17	S30° 55' 28"E	88°16'47"	25.00	24.26	38.52	34.82	9.84	7.06	1+039.42	1+015.16	1+053.68	9124914.48	779822.77		
PI:18	S12° 16' 14"E	50°58'18"	30.00	14.30	26.69	25.82	3.23	2.92	1+092.99	1+078.69	1+105.38	9124852.59	779808.23		

1	1	1	1 1	1	1	1	1	i .	1	1	1	1	1 1
PI:19	S60° 05' 55"E	44°41'03"	30.00	12.33	23.40	22.81	2.43	2.25	1+126.55	1+114.22	1+137.62	9124824.55	779829.95
PI:20	S59° 04' 52"E	46°43'08"	15.00	6.48	12.23	11.89	1.34	1.23	1+146.70	1+140.22	1+152.45	9124821.73	779851.18
PI:21	S52° 42' 32"E	33°58'29"	30.00	9.16	17.79	17.53	1.37	1.31	1+204.78	1+195.61	1+213.40	9124773.99	779885.51
PI:22	S59° 36' 57"E	20°09'40"	30.00	5.33	10.56	10.50	0.47	0.46	1+252.02	1+246.69	1+257.24	9124757.41	779930.33
PI:23	S39° 27' 14"E	20°09'47"	30.00	5.33	10.56	10.50	0.47	0.46	1+277.16	1+271.83	1+282.39	9124741.02	779949.54
PI:24	S42° 47' 03"E	26°49'24"	30.00	7.15	14.04	13.92	0.84	0.82	1+301.78	1+294.62	1+308.67	9124719.47	779961.66
PI:25	S27° 26' 37"E	57°30'16"	25.00	13.72	25.09	24.05	3.52	3.08	1+372.92	1+359.21	1+384.30	9124679.74	780021.00
PI:26	S28° 27' 09"E	59°31'20"	15.00	8.58	15.58	14.89	2.28	1.98	1+401.51	1+392.93	1+408.52	9124648.82	780020.30
PI:27	S42° 22' 59"E	31°39'40"	30.00	8.51	16.58	16.37	1.18	1.14	1+439.11	1+430.60	1+447.18	9124628.19	780053.59
PI:28	S52° 32' 15"E	51°58'12"	30.00	14.62	27.21	26.29	3.37	3.03	1+503.18	1+488.56	1+515.77	9124570.48	780082.43
PI:29	S41° 32' 37"E	73°57'29"	15.00	11.29	19.36	18.05	3.78	3.02	1+543.69	1+532.40	1+551.76	9124562.02	780124.12
PI:30	S19° 47' 52"E	30°27'59"	60.00	16.34	31.90	31.53	2.18	2.11	1+616.31	1+599.97	1+631.87	9124486.42	780130.16
PI:31	S46° 14' 02"E	22°24'20"	30.00	5.94	11.73	11.66	0.58	0.57	1+666.68	1+660.74	1+672.47	9124444.54	780159.52
PI:32	S76° 43' 36"E	38°34'48"	30.00	10.50	20.20	19.82	1.78	1.68	1+700.33	1+689.83	1+710.03	9124426.34	780188.00
PI:33	S87° 42' 54"E	16°36'13"	60.00	8.75	17.39	17.33	0.64	0.63	1+743.80	1+735.04	1+752.43	9124430.98	780232.03
PI:34	S72° 08' 25"E	14°32'44"	60.00	7.66	15.23	15.19	0.49	0.48	1+796.67	1+789.02	1+804.25	9124421.24	780284.12
PI:35	S72° 16' 30"E	14°48'54"	60.00	7.80	15.51	15.47	0.50	0.50	1+833.00	1+825.20	1+840.72	9124405.78	780317.09
PI:36	S42° 29' 33"E	74°22'47"	15.00	11.38	19.47	18.13	3.83	3.05	1+943.06	1+931.68	1+951.15	9124386.05	780425.45
PI:37	S28° 18' 36"W	67°13'32"	15.00	9.97	17.60	16.61	3.01	2.51	1+961.23	1+951.26	1+968.86	9124364.68	780427.43
PI:38	S72° 25' 27"W	21°00'10"	60.00	11.12	21.99	21.87	1.02	1.00	1+999.13	1+988.00	2+010.00	9124345.74	780391.93

	TABLA DE ELEMENTOS DE CURVA														
N°	DIRECCION	DELTA	R.DE	LONG.SUB	LONG.	LONG.	DIST.	DIST. ORDENADA	PTO. DE	PTO.INIC.	PTO.	NORTE	ESTE		
CURVA	DIRECCION	DELTA	CURVA	TANGENTE	CURVA	CUERDA	EXTERNA	MEDIA	INTERSECCION	CUERDA	TANG.	NORTE	ESTE		
PI:39	S77° 40' 17"W	10°30'30"	60.00	5.52	11.00	10.99	0.25	0.25	2+024.42	2+018.90	2+029.91	9124342.59	780366.58		
PI:40	S6° 03' 34"W	132°42'55"	15.00	34.26	34.74	27.48	22.40	8.98	2+094.68	2+060.41	2+095.16	9124321.36	780299.58		
PI:41	S43° 39' 25"E	33°16'57"	30.00	8.97	17.43	17.18	1.31	1.26	2+129.21	2+120.24	2+137.67	9124287.51	780358.92		
PI:42	S75° 12' 50"E	96°23'48"	20.00	22.37	33.65	29.82	10.01	6.67	2+199.83	2+177.47	2+211.12	9124224.14	780391.23		

						_	_	_	_		_	_	
PI:43	N76° 26' 57"E	39°43'22"	30.00	10.84	20.80	20.38	1.90	1.78	2+271.44	2+260.61	2+281.41	9124269.68	780460.25
PI:44	N77° 11' 54"E	38°13'28"	30.00	10.40	20.01	19.65	1.75	1.65	2+341.96	2+331.57	2+351.58	9124261.83	780531.22
PI:45	N44° 56' 09"E	26°18'02"	60.00	14.02	27.54	27.30	1.62	1.57	2+395.09	2+381.07	2+408.61	9124290.33	780576.97
PI:46	N55° 52' 49"E	48°11'24"	15.00	6.71	12.62	12.25	1.43	1.31	2+446.39	2+439.68	2+452.30	9124334.35	780604.26
PI:47	N67° 56' 33"E	24°03'56"	30.00	6.39	12.60	12.51	0.67	0.66	2+473.92	2+467.53	2+480.13	9124339.29	780632.16
PI:48	N73° 54' 38"E	36°00'06"	30.00	9.75	18.85	18.54	1.54	1.47	2+497.78	2+488.03	2+506.88	9124352.76	780652.07
PI:49	S79° 06' 59"E	17°56'39"	90.00	14.21	28.19	28.07	1.11	1.10	2+555.10	2+540.89	2+569.08	9124350.83	780710.01
PI:50	N82° 48' 26"E	54°05'49"	30.00	15.32	28.33	27.28	3.68	3.28	2+594.09	2+578.78	2+607.10	9124337.51	780746.90
PI:51	N47° 51' 29"E	15°48'05"	120.00	16.65	33.09	32.99	1.15	1.14	2+639.52	2+622.87	2+655.96	9124364.37	780786.36
PI:52	N44° 09' 44"E	8°24'35"	200.00	14.70	29.36	29.33	0.54	0.54	2+702.00	2+687.29	2+716.65	9124412.42	780826.62
PI:53	N31° 55' 54"E	32°52'16"	60.00	17.70	34.42	33.95	2.56	2.45	2+748.84	2+731.14	2+765.56	9124443.58	780861.67
PI:54	N6° 42' 05"E	17°35'22"	30.00	4.64	9.21	9.17	0.36	0.35	2+779.32	2+774.68	2+783.89	9124473.89	780870.07
PI:55	N19° 31' 57"E	43°15'06"	30.00	11.89	22.65	22.11	2.27	2.11	2+798.16	2+786.26	2+808.91	9124492.79	780869.38
PI:56	N52° 41' 02"E	23°03'04"	30.00	6.12	12.07	11.99	0.62	0.60	2+826.36	2+820.24	2+832.31	9124514.88	780888.69
PI:57	N51° 34' 37"E	25°15'53"	60.00	13.45	26.46	26.24	1.49	1.45	2+869.39	2+855.94	2+882.40	9124533.67	780927.59
PI:58	N43° 10' 50"E	8°28'19"	60.00	4.44	8.87	8.86	0.16	0.16	2+903.23	2+898.79	2+907.66	9124560.33	780949.14
PI:59	N19° 01' 49"E	56°46'21"	30.00	16.21	29.73	28.52	4.10	3.61	2+946.15	2+929.94	2+959.67	9124589.39	780980.75
PI:60	N1° 13' 20"W	16°16'03"	45.00	6.43	12.78	12.73	0.46	0.45	2+971.16	2+964.73	2+977.51	9124616.72	780976.25

	TABLA DE ELEMENTOS DE CURVA														
N°			R.DE	LONG.SUB	LONG.	LONG.	DIST.	DIST. ORDENADA	PTO. DE	PTO.INIC.	PTO.				
CURVA	DIRECCION	DELTA	CURVA	TANGENTE	CURVA	CUERDA	EXTERNA	MEDIA	INTERSECCION	CUERDA	TANG.	NORTE	ESTE		
PI:61	N5° 38' 34"E	2°32'16"	200.00	4.43	8.86	8.86	0.05	0.05	3+042.40	3+037.97	3+046.83	9124687.53	780984.83		
PI:62	N0° 41' 55"W	10°08'42"	200.00	17.75	35.41	35.37	0.79	0.78	3+101.87	3+084.12	3+119.53	9124746.83	780989.36		
PI:63	N12° 05' 33"E	35°43'39"	60.00	19.34	37.41	36.81	3.04	2.89	3+147.62	3+128.28	3+165.70	9124792.44	780984.75		
PI:64	N15° 45' 05"E	28°24'35"	30.00	7.59	14.88	14.72	0.95	0.92	3+196.96	3+189.37	3+204.24	9124836.28	781010.02		
PI:65	N43° 15' 09"E	83°24'42"	15.00	13.37	21.84	19.96	5.09	3.80	3+234.33	3+220.96	3+242.80	9124873.95	781011.04		
PI:66	N73° 44' 04"E	22°26'52"	30.00	5.95	11.75	11.68	0.58	0.57	3+269.40	3+263.45	3+275.20	9124877.46	781050.85		
PI:67	N73° 47' 47"E	22°34'20"	30.00	5.99	11.82	11.74	0.59	0.58	3+316.64	3+310.65	3+322.47	9124899.34	781092.89		

						_	_	_	_		_		
PI:68	S80° 43' 32"E	28°23'02"	30.00	7.59	14.86	14.71	0.94	0.92	3+355.01	3+347.42	3+362.28	9124902.64	781131.27
PI:69	S83° 45' 36"E	34°27'12"	30.00	9.30	18.04	17.77	1.41	1.35	3+390.57	3+381.27	3+399.31	9124888.35	781164.18
PI:70	N65° 11' 43"E	27°38'10"	30.00	7.38	14.47	14.33	0.89	0.87	3+423.79	3+416.42	3+430.89	9124894.79	781197.35
PI:71	N49° 20' 52"E	4°03'30"	60.00	2.13	4.25	4.25	0.04	0.04	3+440.03	3+437.90	3+442.15	9124905.11	781210.26
PI:72	N60° 16' 10"E	25°54'06"	30.00	6.90	13.56	13.45	0.78	0.76	3+483.99	3+477.09	3+490.65	9124934.91	781242.58
PI:73	N61° 14' 30"E	23°57'27"	30.00	6.37	12.54	12.45	0.67	0.65	3+510.79	3+504.42	3+516.97	9124942.71	781268.46
PI:74	N21° 45' 51"E	54°59'49"	30.00	15.62	28.80	27.70	3.82	3.39	3+535.18	3+519.57	3+548.36	9124958.76	781287.09
PI:75	N14° 33' 48"W	17°39'30"	60.00	9.32	18.49	18.42	0.72	0.71	3+579.40	3+570.08	3+588.57	9125005.17	781282.43
PI:76	N6° 56' 46"E	60°40'39"	15.00	8.78	15.89	15.15	2.38	2.05	3+613.99	3+605.21	3+621.09	9125037.05	781268.63
PI:77	N79° 07' 53"E	83°41'35"	15.00	13.43	21.91	20.01	5.14	3.83	3+634.58	3+621.14	3+643.05	9125054.77	781282.12
PI:78	S83° 41' 33"E	49°20'27"	25.00	11.48	21.53	20.87	2.51	2.28	3+656.80	3+645.32	3+666.85	9125040.77	781305.43
PI:79	N88° 09' 17"E	33°02'08"	30.00	8.90	17.30	17.06	1.29	1.24	3+679.59	3+670.70	3+687.99	9125048.41	781328.42
PI:80	N65° 06' 09"E	79°08'26"	25.00	20.66	34.53	31.85	7.43	5.73	3+735.55	3+714.89	3+749.42	9125034.11	781383.03
PI:81	N16° 09' 36"E	18°44'40"	30.00	4.95	9.81	9.77	0.41	0.40	3+761.28	3+756.33	3+766.14	9125063.45	781397.05
PI:82	N32° 53' 25"E	52°12'19"	25.00	12.25	22.78	22.00	2.84	2.55	3+784.27	3+772.02	3+794.80	9125086.37	781399.77
PI:83	N85° 06' 18"E	52°13'27"	25.00	12.25	22.79	22.01	2.84	2.55	3+807.87	3+795.61	3+818.40	9125099.41	781421.47
PI:84	N79° 26' 22"E	63°33'19"	20.00	12.39	22.18	21.06	3.53	3.00	3+836.40	3+824.01	3+846.20	9125088.46	781449.67
PI:85	N36° 07' 01"E	23°05'23"	30.00	6.13	12.09	12.01	0.62	0.61	3+859.22	3+853.09	3+865.18	9125105.58	781468.46
PI:86	N13° 13' 09"E	22°42'20"	30.00	6.02	11.89	11.81	0.60	0.59	3+886.23	3+880.21	3+892.10	9125130.30	781479.76
PI:87	N13° 17' 56"E	22°51'53"	60.00	12.13	23.94	23.79	1.21	1.19	3+968.61	3+956.47	3+980.42	9125212.78	781482.45
PI:88	N45° 30' 02"E	41°32'19"	30.00	11.38	21.75	21.28	2.09	1.95	4+000.11	3+988.74	4+010.49	9125241.70	781495.77

						TABLA DE	ELEMENTO	S DE CURVA					
N°	DIDECCION	DELTA	R.DE	LONG.SUB	LONG.	LONG.	DIST.	DIST. ORDENADA	PTO. DE	PTO.INIC.	PTO.	NODTE	FCTF
CURVA	DIRECCION	DELTA	CURVA	TANGENTE	CURVA	CUERDA	EXTERNA	MEDIA	INTERSECCION	CUERDA	TANG.	NORTE	ESTE
PI:89	N29° 36' 17"E	73°19'49"	30.00	22.33	38.40	35.83	7.40	5.94	4+060.84	4+038.50	4+076.90	9125266.54	781552.28
PI:90	N8° 41' 15"E	31°29'46"	120.00	33.84	65.97	65.14	4.68	4.50	4+150.11	4+116.27	4+182.24	9125361.36	781540.53
PI:91	N19° 16' 42"E	10°18'52"	30.00	2.71	5.40	5.39	0.12	0.12	4+190.72	4+188.01	4+193.41	9125399.89	781558.04

	•	•		1		•				•	•	•	
PI:92	N23° 02' 54"E	17°51'15"	60.00	9.42	18.70	18.62	0.74	0.73	4+229.75	4+220.33	4+239.03	9125437.76	781567.57
PI:93	N21° 59' 04"E	19°58'55"	60.00	10.57	20.92	20.82	0.92	0.91	4+283.49	4+272.92	4+293.85	9125483.47	781596.10
PI:94	N2° 00' 46"W	28°00'43"	60.00	14.97	29.33	29.04	1.84	1.78	4+342.92	4+327.95	4+357.29	9125541.81	781608.50
PI:95	N1° 41' 05"W	28°40'04"	60.00	15.33	30.02	29.71	1.93	1.87	4+406.73	4+391.40	4+421.42	9125603.72	781590.72
PI:96	N20° 15' 57"E	15°14'01"	60.00	8.02	15.95	15.91	0.53	0.53	4+441.77	4+433.75	4+449.70	9125638.53	781598.54
PI:97	N34° 18' 09"E	12°50'22"	60.00	6.75	13.45	13.42	0.38	0.38	4+502.46	4+495.71	4+509.15	9125692.26	781626.96
PI:98	N31° 12' 11"E	19°02'18"	60.00	10.06	19.94	19.85	0.84	0.83	4+533.18	4+523.12	4+543.05	9125715.59	781647.04
PI:99	N0° 49' 59"W	45°02'00"	30.00	12.44	23.58	22.98	2.48	2.29	4+609.61	4+597.18	4+620.76	9125786.79	781675.35
PI:100	N40° 59' 22"E	128°40'41"	15.00	31.22	33.69	27.04	19.64	8.50	4+653.53	4+622.30	4+655.99	9125828.29	781657.44
PI:101	S66° 16' 55"E	16°46'43"	30.00	4.42	8.79	8.75	0.32	0.32	4+669.96	4+665.53	4+674.32	9125816.35	781701.01
PI:102	S70° 27' 22"E	25°07'36"	60.00	13.37	26.31	26.10	1.47	1.44	4+704.92	4+691.55	4+717.86	9125797.73	781730.68
PI:103	S88° 27' 14"E	10°52'08"	60.00	5.71	11.38	11.36	0.27	0.27	4+745.30	4+739.59	4+750.97	9125792.77	781771.19
PI:104	N78° 51' 46"E	14°29'52"	60.00	7.63	15.18	15.14	0.48	0.48	4+774.23	4+766.60	4+781.78	9125794.73	781800.09
PI:105	N61° 55' 23"E	19°22'54"	60.00	10.25	20.30	20.20	0.87	0.86	4+811.95	4+801.71	4+822.00	9125806.66	781835.97
PI:106	N58° 40' 56"E	12°53'59"	60.00	6.78	13.51	13.48	0.38	0.38	4+855.86	4+849.08	4+862.59	9125833.67	781870.83
PI:107	N46° 51' 16"E	36°33'18"	30.00	9.91	19.14	18.82	1.59	1.51	4+932.48	4+922.57	4+941.71	9125865.91	781940.39
PI:108	N25° 23' 51"E	6°21'31"	120.00	6.67	13.32	13.31	0.18	0.18	4+989.22	4+982.55	4+995.87	9125916.33	781967.86

						TABLA DE	ELEMENTO	S DE CURVA					
N°	DIRECCION	DELTA	R.DE	LONG.SUB	LONG.	LONG.	DIST.	DIST. ORDENADA	PTO. DE	PTO.INIC.	PTO.	NORTE	ESTE
CURVA	DINECCION		CURVA	TANGENTE	CURVA	CUERDA	EXTERNA	MEDIA	INTERSECCION	CUERDA	TANG.	NONTE	2312
PI:109	N28° 17' 01"E	12°07'50"	60.00	6.38	12.70	12.68	0.34	0.34	5+015.25	5+008.87	5+021.58	9125940.44	781977.71
PI:110	N24° 00' 05"E	20°41'41"	60.00	10.96	21.67	21.55	0.99	0.98	5+052.00	5+041.05	5+062.72	9125970.83	781998.47
PI:111	N21° 00' 46"E	14°43'03"	60.00	7.75	15.41	15.37	0.50	0.49	5+082.24	5+074.49	5+089.91	9126000.45	782005.67
PI:112	N42° 59' 07"E	29°13'38"	30.00	7.82	15.30	15.14	1.00	0.97	5+109.04	5+101.22	5+116.52	9126024.10	782018.44
PI:113	N60° 05' 51"E	4°59'48"	90.00	3.93	7.85	7.85	0.09	0.09	5+136.71	5+132.79	5+140.64	9126039.11	782042.09
PI:114	N12° 48' 12"E	99°35'05"	15.00	17.75	26.07	22.91	8.24	5.32	5+168.19	5+150.45	5+176.52	9126053.60	782070.05
PI:115	N10° 25' 08"W	53°08'25"	15.00	7.50	13.91	13.42	1.77	1.58	5+197.35	5+189.85	5+203.76	9126084.42	782046.84

PI:116	N10° 23' 24"E	11°31'21"	90.00	9.08	18.10	18.07	0.46	0.45	5+255.75	5+246.67	5+264.77	9126141.56	782063.38
PI:117	N13° 03' 23"E	16°51'20"	90.00	13.33	26.48	26.38	0.98	0.97	5+290.77	5+277.44	5+303.91	9126176.52	782066.21
PI:118	N1° 29' 19"E	39°59'27"	15.00	5.46	10.47	10.26	0.96	0.90	5+314.11	5+308.65	5+319.12	9126198.42	782074.83
PI:119	N0° 32' 08"W	35°56'34"	30.00	9.73	18.82	18.51	1.54	1.46	5+333.55	5+323.82	5+342.64	9126217.28	782068.52
PI:120	N17° 17' 41"E	0°16'56"	900.00	2.22	4.43	4.43	0.00	0.00	5+422.48	5+420.26	5+424.69	9126302.73	782095.36
PI:121	N34° 07' 31"W	102°33'28"	15.00	18.71	26.85	23.41	8.98	5.62	5+477.48	5+458.77	5+485.62	9126355.29	782111.58
PI:122	N21° 15' 10"W	128°18'11"	15.00	30.96	33.59	27.00	19.40	8.46	5+520.90	5+489.94	5+523.53	9126359.62	782057.77
PI:123	N27° 00' 25"E	31°47'01"	30.00	8.54	16.64	16.43	1.19	1.15	5+542.63	5+534.09	5+550.73	9126396.30	782091.85
PI:124	N25° 42' 55"E	29°11'59"	30.00	7.81	15.29	15.12	1.00	0.97	5+579.89	5+572.07	5+587.36	9126433.29	782099.12
PI:125	N19° 18' 08"E	42°01'33"	30.00	11.52	22.00	21.51	2.14	2.00	5+613.55	5+602.03	5+624.03	9126459.21	782121.12
PI:126	N0° 42' 14"E	4°49'46"	90.00	3.80	7.59	7.58	0.08	0.08	5+654.43	5+650.63	5+658.22	9126501.11	782119.87
PI:127	N6° 04' 00"W	18°22'14"	30.00	4.85	9.62	9.58	0.39	0.38	5+701.69	5+696.84	5+706.45	9126548.31	782122.44
PI:128	N7° 03' 08"E	44°36'29"	60.00	24.61	46.71	45.54	4.85	4.49	5+740.23	5+715.62	5+762.33	9126585.57	782112.28
PI:129	N38° 41' 52"E	18°40'58"	30.00	4.93	9.78	9.74	0.40	0.40	5+776.45	5+771.52	5+781.30	9126619.34	782131.27
PI:130	N58° 07' 31"E	20°10'20"	30.00	5.34	10.56	10.51	0.47	0.46	5+807.98	5+802.65	5+813.21	9126640.48	782154.78
PI:131	N57° 52' 41"E	20°40'01"	30.00	5.47	10.82	10.76	0.49	0.49	5+843.81	5+838.34	5+849.16	9126653.81	782188.14
PI:132	N41° 36' 16"E	11°52'49"	60.00	6.24	12.44	12.42	0.32	0.32	5+926.10	5+919.86	5+932.30	9126709.44	782248.95

						TABLA DE	ELEMENTO	S DE CURVA					
N°	DIDECCION	DELTA	R.DE	LONG.SUB	LONG.	LONG.	DIST.	DIST. ORDENADA	PTO. DE	PTO.INIC.	PTO.	NORTE	FCTF
CURVA	DIRECCION	DELTA	CURVA	TANGENTE	CURVA	CUERDA	EXTERNA	MEDIA	INTERSECCION	CUERDA	TANG.	NORTE	ESTE
PI:133	N31° 22' 56"E	8°33'51"	120.00	8.98	17.94	17.92	0.34	0.33	6+012.38	6+003.39	6+021.33	9126779.58	782299.28
PI:134	N23° 29' 20"E	7°13'22"	120.00	7.57	15.13	15.12	0.24	0.24	6+120.47	6+112.90	6+128.02	9126875.83	782348.53
PI:135	N10° 22' 15"E	19°00'48"	90.00	15.07	29.87	29.73	1.25	1.24	6+239.57	6+224.50	6+254.37	9126987.86	782389.04
PI:136	N37° 53' 43"W	77°31'06"	15.00	12.04	20.29	18.78	4.24	3.30	6+301.27	6+289.23	6+309.52	9127049.82	782389.97
PI:137	S64° 54' 47"W	76°51'54"	15.00	11.90	20.12	18.65	4.15	3.25	6+321.51	6+309.61	6+329.73	9127055.37	782366.59

PI:138	S78° 07' 30"W	103°17'19"	15.00	18.96	27.04	23.53	9.17	5.69	6+364.53	6+345.57	6+372.61	9127013.57	782345.77
PI:139	N2° 41' 01"E	105°49'44"	15.00	19.84	27.71	23.93	9.88	5.95	6+393.52	6+373.67	6+401.38	9127039.07	782315.13
PI:140	N20° 18' 07"E	70°35'31"	25.00	17.70	30.80	28.89	5.63	4.60	6+431.11	6+413.41	6+444.21	9127067.07	782356.03
PI:141	N25° 45' 08"W	21°31'00"	30.00	5.70	11.27	11.20	0.54	0.53	6+461.40	6+455.70	6+466.97	9127100.78	782347.01
PI:142	N5° 52' 50"E	84°46'55"	15.00	13.69	22.20	20.23	5.31	3.92	6+490.15	6+476.46	6+498.65	9127123.99	782329.82
PI:143	N38° 20' 03"E	19°52'29"	30.00	5.26	10.41	10.35	0.46	0.45	6+529.20	6+523.95	6+534.35	9127153.44	782362.84
PI:144	N19° 00' 14"E	18°47'09"	60.00	9.93	19.67	19.58	0.82	0.80	6+588.41	6+578.48	6+598.15	9127205.61	782391.05
PI:145	N14° 27' 30"E	9°41'41"	60.00	5.09	10.15	10.14	0.22	0.21	6+651.06	6+645.97	6+656.12	9127267.56	782401.54
PI:146	N15° 13' 41"E	8°09'18"	120.00	8.55	17.08	17.07	0.30	0.30	6+695.07	6+686.52	6+703.60	9127309.12	782416.09
PI:147	N13° 52' 23"E	5°26'42"	120.00	5.71	11.40	11.40	0.14	0.14	6+747.87	6+742.17	6+753.57	9127360.96	782426.31
PI:148	N8° 52' 45"E	15°25'57"	60.00	8.13	16.16	16.11	0.55	0.54	6+839.20	6+831.07	6+847.23	9127448.49	782452.40
PI:149	N18° 41' 07"E	35°02'41"	45.00	14.21	27.52	27.10	2.19	2.09	6+879.23	6+865.03	6+892.55	9127488.61	782453.21
PI:150	N27° 13' 03"E	17°58'50"	45.00	7.12	14.12	14.06	0.56	0.55	6+918.02	6+910.91	6+925.03	9127520.63	782476.65
PI:151	N21° 38' 39"E	6°50'01"	250.00	14.93	29.82	29.80	0.45	0.44	6+981.00	6+966.07	6+995.89	9127580.56	782496.39

						TABLA DE	ELEMENTO	S DE CURVA					
N°	DIRECCION	DELTA	R.DE	LONG.SUB	LONG.	LONG.	DIST.	DIST. ORDENADA	PTO. DE	PTO.INIC.	PTO.	NORTE	ESTE
CURVA	DIRECCION	DELIA	CURVA	TANGENTE	CURVA	CUERDA	EXTERNA	MEDIA	INTERSECCION	CUERDA	TANG.	NORTE	ESTE
PI:152	N22° 12' 29"E	5°42'21"	120.00	5.98	11.95	11.95	0.15	0.15	7+079.98	7+074.00	7+085.95	9127670.25	782538.33
PI:153	N30° 54' 03"E	23°05'29"	30.00	6.13	12.09	12.01	0.62	0.61	7+132.77	7+126.64	7+138.73	9127720.06	782555.83
PI:154	N36° 42' 11"E	11°29'13"	45.00	4.53	9.02	9.01	0.23	0.23	7+166.34	7+161.81	7+170.83	9127744.96	782578.60
PI:155	N29° 39' 33"E	2°36'02"	300.00	6.81	13.62	13.62	0.08	0.08	7+211.86	7+205.05	7+218.66	9127784.02	782602.03
PI:156	N29° 39' 32"E	2°36'00"	300.00	6.81	13.61	13.61	0.08	0.08	7+256.64	7+249.83	7+263.45	9127823.43	782623.30
PI:157	N29° 29' 06"E	2°56'52"	300.00	7.72	15.43	15.43	0.10	0.10	7+370.65	7+362.94	7+378.37	9127921.20	782681.95
PI:158	N24° 12' 10"E	7°37'01"	300.00	19.97	39.88	39.85	0.66	0.66	7+469.96	7+449.99	7+489.87	9128008.88	782728.59
PI:159	N43° 55' 47"E	47°04'16"	60.00	26.13	49.29	47.92	5.44	4.99	7+585.34	7+559.20	7+608.49	9128117.08	782768.82
PI:160	N55° 11' 32"E	24°32'47"	45.00	9.79	19.28	19.13	1.05	1.03	7+650.17	7+640.38	7+659.66	9128143.06	782831.45
PI:161	N48° 59' 28"E	12°08'38"	30.00	3.19	6.36	6.35	0.17	0.17	7+724.03	7+720.84	7+727.20	9128197.38	782881.95

PI:162	N10° 59' 03"E	88°09'27"	15.00	14.53	23.08	20.87	5.88	4.22	7+770.67	7+756.15	7+779.23	9128224.10	782920.21
PI:163	N74° 22' 18"W	82°33'16"	15.00	13.17	21.61	19.79	4.96	3.73	7+792.80	7+779.64	7+801.25	9128247.64	782904.87
PI:164	S73° 18' 04"W	17°54'01"	45.00	7.09	14.06	14.00	0.55	0.55	7+823.69	7+816.60	7+830.66	9128232.23	782872.77
PI:165	N69° 26' 37"W	56°36'37"	15.00	8.08	14.82	14.23	2.04	1.79	7+865.44	7+857.36	7+872.18	9128226.58	782831.29
PI:166	N59° 02' 12"W	35°47'47"	30.00	9.69	18.74	18.44	1.53	1.45	7+894.63	7+884.94	7+903.69	9128249.58	782811.20
PI:167	N72° 13' 50"W	9°24'30"	120.00	9.87	19.70	19.68	0.41	0.40	7+933.06	7+923.18	7+942.89	9128258.41	782773.15
PI:168	N61° 19' 50"W	12°23'30"	150.00	16.28	32.44	32.38	0.88	0.88	7+986.66	7+970.38	8+002.82	9128278.92	782723.58

						TABLA DE	ELEMENTO	S DE CURVA					
N°	DIRECCION	DELTA	R.DE	LONG.SUB	LONG.	LONG.	DIST.	DIST. ORDENADA	PTO. DE	PTO.INIC.	PTO.	NORTE	ESTE
CURVA	DINECCION	DLLIA	CURVA	TANGENTE	CURVA	CUERDA	EXTERNA	MEDIA	INTERSECCION	CUERDA	TANG.	NONTE	LSTL
PI:169	N46° 57' 42"W	16°20'46"	90.00	12.93	25.68	25.59	0.92	0.91	8+035.65	8+022.72	8+048.40	9128306.99	782683.28
PI:170	N32° 04' 20"W	13°25'58"	150.00	17.66	35.17	35.09	1.04	1.03	8+112.13	8+094.46	8+129.63	9128366.74	782635.26
PI:171	N36° 18' 32"W	21°54'21"	60.00	11.61	22.94	22.80	1.11	1.09	8+161.38	8+149.77	8+172.71	9128411.39	782614.10
PI:172	N15° 59' 34"W	62°32'17"	25.00	15.18	27.29	25.95	4.25	3.63	8+208.96	8+193.78	8+221.07	9128443.88	782578.94
PI:173	N9° 37' 08"E	11°18'54"	120.00	11.89	23.70	23.66	0.59	0.58	8+332.20	8+320.31	8+344.01	9128565.73	782612.22
PI:174	N30° 57' 50"E	54°00'17"	25.00	12.74	23.56	22.70	3.06	2.73	8+439.36	8+426.62	8+450.19	9128672.71	782619.63
PI:175	N16° 04' 07"E	83°47'42"	20.00	17.94	29.25	26.71	6.87	5.11	8+481.81	8+463.86	8+493.11	9128696.24	782657.24
PI:176	N17° 10' 12"W	17°19'03"	60.00	9.14	18.13	18.07	0.69	0.68	8+547.71	8+538.57	8+556.70	9128761.53	782625.64
PI:177	N20° 15' 21"W	23°29'19"	75.00	15.59	30.75	30.53	1.60	1.57	8+600.16	8+584.57	8+615.32	9128813.55	782617.85

PI:178	N26° 57' 35"W	10°04'50"	200.00	17.64	35.19	35.14	0.78	0.77	8+682.88	8+665.24	8+700.43	9128884.07	782573.79
PI:179	N31° 01' 25"W	18°12'29"	60.00	9.61	19.07	18.99	0.77	0.76	8+720.58	8+710.97	8+730.04	9128919.13	782559.68
PI:180	N28° 30' 22"E	137°16'03"	15.00	38.34	35.94	27.94	26.17	9.54	8+778.72	8+740.38	8+776.32	9128963.71	782522.10

						TABLA DE	ELEMENTO	S DE CURVA					
N°	DIRECCION	DELTA	R.DE	LONG.SUB	LONG.	LONG.	DIST.	DIST. ORDENADA	PTO. DE	PTO.INIC.	PTO.	NORTE	ESTE
CURVA	J200.0		CURVA	TANGENTE	CURVA	CUERDA	EXTERNA	MEDIA	INTERSECCION	CUERDA	TANG.		20.2
PI:217	N14° 13' 43"E	73°40'54"	15.00	11.24	19.29	17.99	3.74	3.00	10+789.66	10+778.42	10+797.71	9129409.32	783438.14
PI:218	S87° 26' 45"E	82°58'11"	15.00	13.26	21.72	19.87	5.02	3.76	10+811.82	10+798.56	10+820.28	9129425.24	783457.86
PI:219	S85° 34' 24"E	79°13'30"	20.00	16.55	27.65	25.50	5.96	4.59	10+895.39	10+878.84	10+906.49	9129363.81	783521.39
PI:220	N78° 18' 21"E	46°58'59"	45.00	19.56	36.90	35.88	4.07	3.73	10+941.35	10+921.79	10+958.69	9129393.43	783563.41
PI:221	S63° 48' 20"E	28°47'39"	100.00	25.67	50.26	49.73	3.24	3.14	11+000.06	10+974.39	11+024.64	9129380.98	783623.04
PI:222	S25° 26' 43"E	47°55'34"	40.00	17.78	33.46	32.49	3.77	3.45	11+055.45	11+037.67	11+071.13	9129344.23	783665.93
PI:223	S21° 55' 23"E	40°52'55"	30.00	11.18	21.41	20.95	2.02	1.89	11+105.66	11+094.48	11+115.88	9129291.94	783667.28
PI:224	N83° 52' 00"E	107°32'19"	15.00	20.47	28.15	24.20	10.38	6.13	11+136.55	11+116.08	11+144.24	9129268.40	783688.75
PI:225	N47° 32' 13"E	34°52'45"	30.00	9.42	18.26	17.98	1.45	1.38	11+163.73	11+154.31	11+172.57	9129302.98	783708.79
PI:226	N34° 40' 32"E	60°36'07"	20.00	11.69	21.15	20.18	3.16	2.73	11+225.31	11+213.63	11+234.78	9129329.28	783765.12
PI:227	N8° 37' 09"E	8°29'20"	60.00	4.45	8.89	8.88	0.17	0.16	11+262.54	11+258.09	11+266.98	9129368.61	783768.13
PI:228	N8° 32' 02"W	42°47'41"	15.00	5.88	11.20	10.95	1.11	1.03	11+287.33	11+281.46	11+292.66	9129392.80	783773.65
PI:229	N17° 11' 55"W	25°27'54"	45.00	10.17	20.00	19.84	1.13	1.11	11+320.67	11+310.51	11+330.51	9129422.17	783756.74
PI:230	N5° 53' 41"E	20°43'17"	45.00	8.23	16.27	16.19	0.75	0.73	11+393.24	11+385.02	11+401.29	9129494.85	783751.07
PI:231	N87° 54' 40"E	143°18'42"	15.00	45.24	37.52	28.48	32.66	10.28	11+458.82	11+413.58	11+451.10	9129557.98	783769.47
PI:232	S29° 10' 01"E	17°28'06"	60.00	9.22	18.29	18.22	0.70	0.70	11+499.67	11+490.46	11+508.75	9129470.07	783802.22
PI:233	S25° 18' 53"E	25°10'23"	60.00	13.40	26.36	26.15	1.48	1.44	11+571.73	11+558.34	11+584.70	9129413.09	783846.58
PI:234	S22° 10' 08"E	18°52'54"	60.00	9.98	19.77	19.68	0.82	0.81	11+602.80	11+592.83	11+612.60	9129382.36	783853.52
PI:235	S1° 56' 50"W	67°06'51"	20.00	13.27	23.43	22.11	4.00	3.33	11+659.48	11+646.22	11+669.64	9129333.94	783883.32
PI:236	S6° 59' 53"W	57°00'46"	45.00	24.44	44.78	42.95	6.21	5.46	11+711.15	11+686.71	11+731.49	9129289.35	783851.51
PI:237	S15° 49' 32"E	11°21'56"	45.00	4.48	8.93	8.91	0.22	0.22	11+763.74	11+759.26	11+768.19	9129236.61	783872.29

PI:238	S17° 20' 32"E	14°23'56"	45.00	5.68	11.31	11.28	0.36	0.35	11+793.45	11+787.77	11+799.08	9129207.33	783877.53
PI:239	S28° 45' 32"E	8°26'05"	60.00	4.42	8.83	8.82	0.16	0.16	11+831.46	11+827.04	11+835.87	9129172.70	783893.34
PI:240	S30° 22' 23"E	5°12'25"	60.00	2.73	5.45	5.45	0.06	0.06	11+870.65	11+867.92	11+873.38	9129139.81	783914.68
PI:241	S23° 21' 07"E	8°50'05"	90.00	6.95	13.88	13.86	0.27	0.27	11+940.75	11+933.79	11+947.67	9129077.79	783947.34
PI:242	S25° 04' 00"E	12°15'51"	90.00	9.67	19.26	19.23	0.52	0.51	11+968.05	11+958.38	11+977.65	9129051.93	783956.21
PI:243	S40° 34' 34"E	18°45'17"	60.00	9.91	19.64	19.55	0.81	0.80	12+000.21	11+990.30	12+009.94	9129024.36	783972.91

						TABLA DE	ELEMENTO	OS DE CURVA					
N°	DIRECCION	DELTA	R.DE	LONG.SUB	LONG.	LONG.	DIST.	DIST. ORDENADA	PTO. DE	PTO.INIC.	PTO.	NORTE	ESTE
CURVA	DINEGGION	52277	CURVA	TANGENTE	CURVA	CUERDA	EXTERNA	MEDIA	INTERSECCION	CUERDA	TANG.		2312
PI:244	S33° 17' 29"E	33°19'27"	40.00	11.97	23.26	22.94	1.75	1.68	12+068.06	12+056.09	12+079.36	9128980.59	784024.99
PI:245	S36° 01' 35"E	38°47'37"	30.00	10.56	20.31	19.93	1.81	1.70	12+151.46	12+140.90	12+161.21	9128900.03	784049.05
PI:246	S67° 23' 24"E	23°56'01"	30.00	6.36	12.53	12.44	0.67	0.65	12+169.63	12+163.27	12+175.80	9128889.26	784064.68
PI:247	S56° 30' 10"E	45°42'29"	20.00	8.43	15.96	15.54	1.70	1.57	12+195.27	12+186.84	12+202.80	9128884.49	784090.06
PI:248	S23° 55' 16"E	19°27'20"	30.00	5.14	10.19	10.14	0.44	0.43	12+213.68	12+208.53	12+218.72	9128868.41	784100.76
PI:249	S31° 49' 56"E	35°16'42"	30.00	9.54	18.47	18.18	1.48	1.41	12+264.98	12+255.44	12+273.91	9128818.58	784113.36
PI:250	S37° 01' 05"E	24°54'24"	45.00	9.94	19.56	19.41	1.08	1.06	12+297.95	12+288.01	12+307.58	9128796.76	784138.89
PI:251	S22° 47' 16"E	3°33'14"	150.00	4.65	9.30	9.30	0.07	0.07	12+352.43	12+347.77	12+357.08	9128746.93	784161.66
PI:252	S29° 16' 13"E	16°31'09"	60.00	8.71	17.30	17.24	0.63	0.62	12+378.19	12+369.48	12+386.78	9128722.87	784170.90
PI:253	S49° 27' 47"E	23°51'58"	45.00	9.51	18.74	18.61	0.99	0.97	12+414.20	12+404.69	12+423.43	9128694.22	784192.91
PI:254	S43° 33' 34"E	35°40'23"	40.00	12.87	24.90	24.50	2.02	1.92	12+443.84	12+430.97	12+455.87	9128679.90	784219.17
PI:255	S35° 58' 51"E	20°30'57"	90.00	16.29	32.23	32.05	1.46	1.44	12+495.23	12+478.94	12+511.16	9128632.85	784241.84
PI:256	S40° 34' 35"E	11°19'30"	60.00	5.95	11.86	11.84	0.29	0.29	12+529.58	12+523.63	12+535.49	9128608.85	784266.91
PI:257	S28° 47' 41"E	12°14'17"	60.00	6.43	12.82	12.79	0.34	0.34	12+580.65	12+574.22	12+587.03	9128566.94	784296.16
PI:258	S30° 03' 36"E	14°46'07"	60.00	7.78	15.47	15.42	0.50	0.50	12+598.97	12+591.19	12+606.66	9128549.99	784303.24
PI:259	S44° 34' 32"E	14°15'45"	60.00	7.51	14.94	14.90	0.47	0.46	12+632.78	12+625.27	12+640.21	9128523.08	784323.85
PI:260	S48° 03' 23"E	7°18'04"	90.00	5.74	11.47	11.46	0.18	0.18	12+689.06	12+683.31	12+694.78	9128488.16	784368.08
PI:261	S50° 42' 03"E	12°35'24"	60.00	6.62	13.18	13.16	0.36	0.36	12+737.34	12+730.72	12+743.91	9128453.65	784401.87
PI:262	S52° 19' 12"E	9°21'06"	60.00	4.91	9.79	9.78	0.20	0.20	12+809.21	12+804.30	12+814.09	9128414.48	784462.19

PI:263	S67° 29' 45"E	39°42'13"	25.00	9.03	17.32	16.98	1.58	1.49	12+854.00	12+844.98	12+862.30	9128384.28	784495.31
PI:264	S85° 43' 34"E	3°14'36"	120.00	3.40	6.79	6.79	0.05	0.05	12+893.23	12+889.84	12+896.63	9128382.43	784535.22
PI:265	S28° 39' 16"E	110°53'59"	15.00	21.78	29.03	24.71	11.45	6.49	12+957.75	12+935.97	12+965.00	9128375.81	784599.40
PI:266	S3° 46' 19"W	46°02'50"	15.00	6.37	12.06	11.73	1.30	1.19	12+974.49	12+968.12	12+980.17	9128347.89	784585.30

						TABLA DE	ELEMENTO	S DE CURVA					
N°	DIRECCION	DELTA	R.DE	LONG.SUB	LONG.	LONG.	DIST.	DIST. ORDENADA	PTO. DE	PTO.INIC.	PTO.	NORTE	ESTE
CURVA	J200.0	22	CURVA	TANGENTE	CURVA	CUERDA	EXTERNA	MEDIA	INTERSECCION	CUERDA	TANG.		20:2
PI:267	S13° 41' 07"E	11°07'58"	90.00	8.77	17.49	17.46	0.43	0.42	13+009.57	13+000.79	13+018.28	9128314.12	784597.10
PI:268	S23° 41' 31"E	31°08'47"	120.00	33.44	65.23	64.43	4.57	4.41	13+085.70	13+052.26	13+117.49	9128238.69	784607.86
PI:269	S32° 11' 53"E	14°08'03"	90.00	11.16	22.20	22.15	0.69	0.68	13+173.19	13+162.03	13+184.23	9128169.68	784664.28
PI:270	S39° 23' 37"E	28°31'31"	60.00	15.25	29.87	29.56	1.91	1.85	13+211.28	13+196.03	13+225.90	9128135.09	784680.50
PI:271	S57° 54' 31"E	8°30'17"	120.00	8.92	17.81	17.80	0.33	0.33	13+259.63	13+250.71	13+268.52	9128106.06	784719.96
PI:272	S38° 22' 16"E	47°34'46"	45.00	19.84	37.37	36.30	4.18	3.82	13+305.15	13+285.32	13+322.68	9128084.79	784760.24
PI:273	S20° 09' 44"E	11°09'40"	60.00	5.86	11.69	11.67	0.29	0.28	13+348.96	13+343.10	13+354.78	9128040.16	784771.85
PI:274	S30° 33' 53"E	9°38'40"	60.00	5.06	10.10	10.09	0.21	0.21	13+442.61	13+437.55	13+447.65	9127955.77	784812.54
PI:275	S69° 57' 10"E	69°07'53"	30.00	20.67	36.20	34.04	6.43	5.30	13+533.33	13+512.66	13+548.86	9127881.79	784865.09
PI:276	N82° 24' 25"E	13°51'02"	45.00	5.47	10.88	10.85	0.33	0.33	13+569.97	13+564.50	13+575.38	9127892.26	784905.53
PI:277	N79° 38' 06"E	19°23'39"	45.00	7.69	15.23	15.16	0.65	0.64	13+604.08	13+596.39	13+611.62	9127892.66	784939.70
PI:278	N84° 45' 32"E	29°38'30"	45.00	11.91	23.28	23.02	1.55	1.50	13+639.93	13+628.02	13+651.30	9127905.01	784973.51
PI:279	S76° 15' 00"E	8°20'27"	90.00	6.56	13.10	13.09	0.24	0.24	13+672.69	13+666.13	13+679.23	9127899.47	785006.34
PI:280	S79° 43' 41"E	15°17'48"	45.00	6.04	12.01	11.98	0.40	0.40	13+701.77	13+695.73	13+707.74	9127890.52	785034.03
PI:281	N80° 28' 29"E	24°17'52"	30.00	6.46	12.72	12.63	0.69	0.67	13+731.55	13+725.10	13+737.82	9127889.15	785063.85
PI:282	S82° 35' 56"E	58°09'02"	25.00	13.90	25.37	24.30	3.60	3.15	13+837.76	13+823.86	13+849.24	9127928.45	785162.73
PI:283	S72° 16' 45"E	37°30'41"	25.00	8.49	16.37	16.08	1.40	1.33	13+876.35	13+867.86	13+884.22	9127904.07	785195.71
PI:284	N77° 32' 39"E	22°50'31"	30.00	6.06	11.96	11.88	0.61	0.59	13+915.81	13+909.75	13+921.71	9127904.79	785235.78
PI:285	N73° 35' 15"E	14°55'44"	60.00	7.86	15.63	15.59	0.51	0.51	13+968.44	13+960.57	13+976.21	9127926.16	785284.05
PI:286	N71° 06' 21"E	19°53'34"	60.00	10.52	20.83	20.73	0.92	0.90	13+993.65	13+983.13	14+003.96	9127930.09	785309.05

						TABLA DE	ELEMENTO	S DE CURVA					
N°	DIRECCION	DELTA	R.DE	LONG.SUB	LONG.	LONG.	DIST.	DIST. ORDENADA	PTO. DE	PTO.INIC.	PTO.	NORTE	ESTE
CURVA	5200.0	522.71	CURVA	TANGENTE	CURVA	CUERDA	EXTERNA	MEDIA	INTERSECCION	CUERDA	TANG.		20.2
PI:287	N76° 50' 47"E	31°22'28"	15.00	4.21	8.21	8.11	0.58	0.56	14+012.11	14+007.90	14+016.11	9127939.10	785325.40
PI:288	N68° 41' 11"E	47°41'40"	25.00	11.05	20.81	20.21	2.33	2.13	14+057.41	14+046.36	14+067.17	9127937.08	785370.87
PI:289	N36° 08' 28"E	17°23'47"	60.00	9.18	18.22	18.15	0.70	0.69	14+113.02	14+103.84	14+122.06	9127977.43	785410.99
PI:290	N54° 31' 18"E	54°09'27"	20.00	10.23	18.90	18.21	2.46	2.19	14+143.70	14+133.48	14+152.38	9128004.79	785425.20
PI:291	N88° 46′ 13″E	14°20'23"	60.00	7.55	15.02	14.98	0.47	0.47	14+192.87	14+185.32	14+200.34	9128012.20	785475.37
PI:292	N69° 23' 30"E	53°05'48"	30.00	14.99	27.80	26.82	3.54	3.16	14+236.60	14+221.61	14+249.41	9128007.66	785518.94
PI:293	N56° 41' 25"E	27°41'38"	30.00	7.39	14.50	14.36	0.90	0.87	14+272.17	14+264.77	14+279.27	9128035.34	785544.61
PI:294	N51° 30' 09"E	38°04'11"	60.00	20.70	39.87	39.14	3.47	3.28	14+316.93	14+296.23	14+336.10	9128050.35	785587.08
PI:295	N73° 18' 03"E	81°39'58"	15.00	12.96	21.38	19.62	4.83	3.65	14+353.89	14+340.93	14+362.31	9128082.82	785607.75
PI:296	S15° 22' 26"E	100°59'05"	15.00	18.19	26.44	23.15	8.58	5.46	14+380.89	14+362.70	14+389.14	9128069.93	785636.54
PI:297	S25° 31' 02"W	19°12'09"	30.00	5.07	10.05	10.01	0.43	0.42	14+412.40	14+407.33	14+417.38	9128036.02	785612.69
PI:298	S12° 03' 30"E	55°56'55"	30.00	15.93	29.29	28.14	3.97	3.51	14+483.67	14+467.73	14+497.03	9127967.39	785593.12
PI:299	S0° 26' 04"E	79°11'48"	15.00	12.41	20.73	19.12	4.47	3.44	14+524.14	14+511.73	14+532.46	9127934.43	785620.80
PI:300	S43° 06' 06"W	7°52'31"	90.00	6.19	12.37	12.36	0.21	0.21	14+554.78	14+548.58	14+560.95	9127907.51	785598.87
PI:301	S26° 10' 47"W	41°43'09"	40.00	15.24	29.13	28.49	2.81	2.62	14+597.00	14+581.76	14+610.88	9127878.72	785567.96
PI:302	S0° 34' 05"E	11°46'34"	60.00	6.19	12.33	12.31	0.32	0.32	14+636.42	14+630.23	14+642.56	9127838.12	785564.18
PI:303	S15° 50′ 17″E	18°45'50"	30.00	4.96	9.82	9.78	0.41	0.40	14+676.67	14+671.71	14+681.54	9127798.08	785568.71
PI:304	S16° 46' 06"E	16°54'11"	30.00	4.46	8.85	8.82	0.33	0.33	14+699.86	14+695.40	14+704.26	9127777.02	785578.63
PI:305	S1° 12' 46"W	19°03'34"	30.00	5.04	9.98	9.93	0.42	0.41	14+737.83	14+732.80	14+742.77	9127739.39	785584.13
PI:306	S30° 17' 34"E	82°04'14"	15.00	13.06	21.49	19.70	4.89	3.69	14+774.27	14+761.22	14+782.70	9127703.49	785577.32
PI:307	N70° 45' 57"E	75°48'45"	15.00	11.68	19.85	18.43	4.01	3.16	14+795.17	14+783.49	14+803.33	9127695.32	785601.50
PI:308	N45° 54' 37"E	26°06'07"	30.00	6.95	13.67	13.55	0.80	0.77	14+816.09	14+809.13	14+822.80	9127715.85	785614.76
PI:309	N49° 36' 56"E	18°41'30"	30.00	4.94	9.79	9.74	0.40	0.40	14+832.81	14+827.87	14+837.66	9127724.59	785629.29
PI:310	N51° 57' 32"E	23°22'44"	30.00	6.21	12.24	12.16	0.64	0.62	14+862.52	14+856.32	14+868.56	9127747.33	785648.55

PI:311	S87° 57' 07"E	56°47'57"	45.00	24.33	44.61	42.81	6.16	5.42	14+913.67	14+889.34	14+933.95	9127770.11	785694.54
PI:312	S52° 57' 50"E	13°10'38"	30.00	3.47	6.90	6.88	0.20	0.20	14+957.50	14+954.04	14+960.94	9127745.85	785735.82

						TABLA DE	ELEMENTO	S DE CURVA					
N°	DIRECCION	DELTA	R.DE	LONG.SUB	LONG.	LONG.	DIST.	DIST. ORDENADA	PTO. DE	PTO.INIC.	PTO.	NORTE	ESTE
CURVA			CURVA	TANGENTE	CURVA	CUERDA	EXTERNA	MEDIA	INTERSECCION	CUERDA	TANG.	_	
PI:313	S38° 36' 18"E	15°32'26"	60.00	8.19	16.27	16.22	0.56	0.55	15+024.02	15+015.84	15+032.11	9127699.93	785784.00
PI:314	S32° 18' 54"E	2°57'39"	150.00	3.88	7.75	7.75	0.05	0.05	15+069.39	15+065.52	15+073.27	9127660.89	785807.30
PI:315	S30° 05' 30"E	7°24'27"	120.00	7.77	15.51	15.50	0.25	0.25	15+113.99	15+106.22	15+121.73	9127623.83	785832.11
PI:316	S42° 36' 30"E	32°26'26"	15.00	4.36	8.49	8.38	0.62	0.60	15+174.84	15+170.48	15+178.97	9127569.29	785859.16
PI:317	S20° 32' 21"E	76°34'44"	15.00	11.84	20.05	18.59	4.11	3.23	15+200.96	15+189.12	15+209.17	9127555.66	785881.71
PI:318	S8° 49' 29"E	53°08'59"	25.00	12.51	23.19	22.37	2.95	2.64	15+231.62	15+219.11	15+242.31	9127522.99	785871.25
PI:319	S18° 21' 26"E	34°05'05"	30.00	9.20	17.85	17.58	1.38	1.32	15+285.29	15+276.10	15+293.95	9127477.76	785903.40
PI:320	S27° 56' 34"E	53°15'22"	20.00	10.03	18.59	17.93	2.37	2.12	15+316.78	15+306.75	15+325.34	9127445.74	785904.14
PI:321	S36° 50' 09"E	35°28'12"	30.00	9.59	18.57	18.28	1.50	1.43	15+343.09	15+333.49	15+352.06	9127429.64	785926.77
PI:322	S23° 29' 03"E	8°46'00"	120.00	9.20	18.36	18.34	0.35	0.35	15+385.61	15+376.41	15+394.78	9127388.87	785940.88
PI:323	S58° 28' 50"E	61°13'34"	30.00	17.75	32.06	30.55	4.86	4.18	15+453.23	15+435.48	15+467.53	9127329.06	785972.51
PI:324	S51° 02' 20"E	76°06'34"	15.00	11.74	19.93	18.49	4.05	3.19	15+494.51	15+482.77	15+502.69	9127328.36	786017.23
PI:325	S43° 45' 54"E	61°33'41"	15.00	8.93	16.12	15.35	2.46	2.11	15+550.75	15+541.82	15+557.94	9127270.08	786030.66
PI:326	S44° 21' 44"E	60°21'59"	20.00	11.63	21.07	20.11	3.14	2.71	15+586.41	15+574.78	15+595.85	9127260.11	786066.72
PI:327	S6° 45' 01"E	14°51'28"	60.00	7.82	15.56	15.52	0.51	0.50	15+658.88	15+651.05	15+666.61	9127187.72	786085.01
PI:328	S3° 24' 36"E	8°10'40"	60.00	4.29	8.56	8.56	0.15	0.15	15+709.87	15+705.58	15+714.14	9127136.65	786084.40
PI:329	S17° 23' 55"E	19°47'57"	60.00	10.47	20.73	20.63	0.91	0.89	15+759.16	15+748.69	15+769.42	9127087.76	786090.84
PI:330	S17° 35' 39"E	19°24'30"	60.00	10.26	20.32	20.23	0.87	0.86	15+805.29	15+795.03	15+815.35	9127046.59	786112.09
PI:331	S18° 38' 39"E	21°30'30"	60.00	11.40	22.52	22.39	1.07	1.05	15+851.05	15+839.65	15+862.18	9127001.06	786118.40
PI:332	S42° 58' 41"E	27°09'36"	40.00	9.66	18.96	18.78	1.15	1.12	15+905.91	15+896.25	15+915.21	9126953.04	786145.46
PI:333	S66° 03' 37"E	19°00'15"	30.00	5.02	9.95	9.91	0.42	0.41	15+933.33	15+928.31	15+938.26	9126937.72	786168.65
PI:334	S64° 18' 36"E	22°30'16"	30.00	5.97	11.78	11.71	0.59	0.58	15+961.85	15+955.88	15+967.66	9126930.59	786196.35

						TABLA DE	ELEMENTO	S DE CURVA					
N°	DIRECCION	DELTA	R.DE	LONG.SUB	LONG.	LONG.	DIST.	DIST. ORDENADA	PTO. DE	PTO.INIC.	PTO.	NORTE	ESTE
CURVA	5266.61.	522.73	CURVA	TANGENTE	CURVA	CUERDA	EXTERNA	MEDIA	INTERSECCION	CUERDA	TANG.		20.2
PI:335	S65° 26' 48"E	24°46'40"	30.00	6.59	12.97	12.87	0.72	0.70	16+005.86	15+999.27	16+012.24	9126904.05	786231.65
PI:336	S73° 47' 18"E	8°05'41"	90.00	6.37	12.72	12.70	0.23	0.22	16+041.05	16+034.68	16+047.40	9126896.59	786266.25
PI:337	S78° 11' 43"E	16°54'32"	40.00	5.95	11.80	11.76	0.44	0.43	16+074.51	16+068.56	16+080.37	9126884.99	786297.65
PI:338	S81° 50' 27"E	9°37'05"	40.00	3.37	6.71	6.71	0.14	0.14	16+125.15	16+121.78	16+128.50	9126882.03	786348.29
PI:339	S87° 51' 45"E	21°39'40"	40.00	7.65	15.12	15.03	0.73	0.71	16+157.36	16+149.70	16+164.83	9126874.80	786379.70
PI:340	N84° 36' 14"E	6°35'39"	90.00	5.18	10.36	10.35	0.15	0.15	16+195.15	16+189.97	16+200.32	9126880.54	786417.24
PI:341	N67° 28' 54"E	40°50'19"	35.00	13.03	24.95	24.42	2.35	2.20	16+229.17	16+216.14	16+241.09	9126881.79	786451.25
PI:342	S82° 55' 15"E	100°02'00"	30.00	35.77	52.38	45.97	16.69	10.72	16+335.65	16+299.88	16+352.26	9126955.08	786530.02
PI:343	S47° 38' 15"E	29°28'00"	45.00	11.83	23.14	22.89	1.53	1.48	16+413.41	16+401.57	16+424.72	9126873.70	786582.67
PI:344	S65° 33' 23"E	6°22'16"	90.00	5.01	10.01	10.00	0.14	0.14	16+463.46	16+458.45	16+468.46	9126850.25	786627.48
PI:345	S66° 34' 13"E	4°20'35"	120.00	4.55	9.10	9.09	0.09	0.09	16+516.69	16+512.14	16+521.24	9126830.95	786677.10
PI:346	S75° 15' 27"E	21°43'04"	40.00	7.67	15.16	15.07	0.73	0.72	16+556.00	16+548.33	16+563.49	9126813.96	786712.55
PI:347	S80° 47' 43"E	10°38'33"	40.00	3.73	7.43	7.42	0.17	0.17	16+585.45	16+581.72	16+589.15	9126811.95	786742.12
PI:348	N74° 42' 41"E	59°37'44"	25.00	14.33	26.02	24.86	3.81	3.31	16+620.60	16+606.27	16+632.29	9126803.13	786776.16
PI:349	N56° 40' 17"E	23°32'55"	30.00	6.25	12.33	12.24	0.64	0.63	16+686.76	16+680.51	16+692.84	9126851.86	786824.72
PI:350	N65° 12' 55"E	6°27'38"	90.00	5.08	10.15	10.14	0.14	0.14	16+762.37	16+757.29	16+767.44	9126879.71	786895.21
PI:351	N64° 11' 30"E	4°24'48"	120.00	4.62	9.24	9.24	0.09	0.09	16+854.69	16+850.06	16+859.31	9126923.07	786976.72
PI:352	N73° 32' 18"E	14°16'48"	60.00	7.52	14.95	14.92	0.47	0.47	16+928.69	16+921.18	16+936.13	9126952.70	787044.54
PI:353	N74° 35' 17"E	12°10'50"	60.00	6.40	12.76	12.73	0.34	0.34	16+965.34	16+958.93	16+971.69	9126958.65	787080.77

						TABLA DE	ELEMENTO	S DE CURVA					
N°	DIRECCION	55174	R.DE	LONG.SUB	LONG.	LONG.	DIST.	DIST. ORDENADA	PTO. DE	PTO.INIC.	PTO.	NORTE	5075
CURVA	DIRECCION	DELTA	CURVA	TANGENTE	CURVA	CUERDA	EXTERNA	MEDIA	INTERSECCION	CUERDA	TANG.	NORTE	ESTE
PI:354	N64° 34' 56"E	7°49'53"	60.00	4.11	8.20	8.19	0.14	0.14	17+034.73	17+030.63	17+038.83	9126984.11	787145.39

PI:355	N71° 30' 32"E	21°41'05"	30.00	5.75	11.35	11.29	0.55	0.54	17+063.40	17+057.66	17+069.01	9126998.16	787170.39
PI:356	N77° 24' 07"E	9°53'55"	90.00	7.79	15.55	15.53	0.34	0.34	17+146.59	17+138.80	17+154.35	9127009.25	787252.98
PI:357	N82° 14' 04"E	19°33'49"	60.00	10.34	20.49	20.39	0.89	0.87	17+188.24	17+177.89	17+198.38	9127021.82	787292.72
PI:358	N80° 25' 29"E	23°10'59"	60.00	12.31	24.28	24.11	1.25	1.22	17+298.39	17+286.08	17+310.36	9127017.93	787403.00
PI:359	N72° 29' 19"E	7°18'39"	60.00	3.83	7.66	7.65	0.12	0.12	17+370.31	17+366.48	17+374.13	9127044.03	787470.39
PI:360	N71° 32' 00"E	9°13'19"	60.00	4.84	9.66	9.65	0.19	0.19	17+444.75	17+439.91	17+449.57	9127061.86	787542.67
PI:361	N69° 07' 17"E	4°23'54"	120.00	4.61	9.21	9.21	0.09	0.09	17+499.14	17+494.53	17+503.74	9127083.18	787592.73
PI:362	N67° 32' 07"E	7°34'14"	120.00	7.94	15.86	15.84	0.26	0.26	17+552.31	17+544.37	17+560.23	9127100.21	787643.10
PI:363	N57° 23' 34"E	12°42'53"	90.00	10.03	19.97	19.93	0.56	0.55	17+595.92	17+585.90	17+605.87	9127119.51	787682.24
PI:364	N47° 44' 11"E	6°35'53"	90.00	5.19	10.36	10.36	0.15	0.15	17+661.61	17+656.43	17+666.79	9127160.87	787733.38
PI:365	N59° 02' 57"E	29°13'24"	70.00	18.25	35.70	35.32	2.34	2.26	17+791.22	17+772.97	17+808.67	9127253.42	787824.13
PI:366	N69° 20' 14"E	8°38'49"	70.00	5.29	10.56	10.55	0.20	0.20	17+875.15	17+869.86	17+880.42	9127277.26	787905.43
PI:367	N69° 18' 59"E	8°36'19"	70.00	5.27	10.51	10.50	0.20	0.20	17+902.41	17+897.15	17+907.66	9127288.78	787930.16
PI:368	N70° 20' 02"E	6°34'13"	90.00	5.17	10.32	10.31	0.15	0.15	17+962.55	17+957.38	17+967.70	9127305.75	787987.88

						TABLA DE	ELEMENTO	S DE CURVA					
N°	DIRECCION	DELTA	R.DE	LONG.SUB	LONG.	LONG.	DIST.	DIST. ORDENADA	PTO. DE	PTO.INIC.	PTO.	NORTE	ESTE
CURVA	DINECCION	DLEIM	CURVA	TANGENTE	CURVA	CUERDA	EXTERNA	MEDIA	INTERSECCION	CUERDA	TANG.	NONTE	2372
PI:369	N60° 43' 18"E	12°39'15"	90.00	9.98	19.88	19.84	0.55	0.55	18+030.50	18+020.52	18+040.40	9127332.25	788050.46
PI:370	N44° 26' 42"E	19°53'57"	40.00	7.02	13.89	13.82	0.61	0.60	18+064.15	18+057.13	18+071.03	9127351.89	788077.88
PI:371	N36° 53' 01"E	4°46'35"	60.00	2.50	5.00	5.00	0.05	0.05	18+096.47	18+093.97	18+098.97	9127378.64	788096.27
PI:372	N44° 52' 57"E	11°13'17"	90.00	8.84	17.63	17.60	0.43	0.43	18+139.66	18+130.82	18+148.45	9127412.08	788123.61
PI:373	N45° 39' 25"E	9°40'21"	60.00	5.08	10.13	10.12	0.21	0.21	18+165.41	18+160.33	18+170.46	9127428.49	788143.52
PI:374	N17° 20' 35"E	46°57'20"	25.00	10.86	20.49	19.92	2.26	2.07	18+198.70	18+187.84	18+208.33	9127453.70	788165.30
PI:375	N9° 11' 15"E	30°38'40"	40.00	10.96	21.39	21.14	1.47	1.42	18+239.21	18+228.25	18+249.65	9127495.21	788160.84
PI:376	N54° 36' 29"E	60°11'48"	15.00	8.69	15.76	15.04	2.34	2.02	18+287.64	18+278.94	18+294.70	9127539.75	788181.14
PI:377	S71° 15' 53"E	48°03'28"	15.00	6.69	12.58	12.22	1.42	1.30	18+351.47	18+344.79	18+357.37	9127545.79	788246.33
PI:378	S89° 03' 26"E	83°38'34"	15.00	13.42	21.90	20.00	5.13	3.82	18+373.60	18+360.17	18+382.07	9127530.23	788263.15
PI:379	N69° 58' 15"E	41°41'56"	15.00	5.71	10.92	10.68	1.05	0.98	18+396.52	18+390.81	18+401.72	9127548.47	788284.22

PI:380	S83° 25' 18"E	11°31'00"	90.00	9.08	18.09	18.06	0.46	0.45	18+457.30	18+448.22	18+466.31	9127547.59	788345.50
PI:381	S33° 01' 14"E	89°17'08"	25.00	24.69	38.96	35.13	10.14	7.21	18+529.19	18+504.50	18+543.46	9127532.22	788415.80
PI:382	S44° 42' 55"E	112°40'31"	15.00	22.52	29.50	24.97	12.06	6.69	18+571.19	18+548.66	18+578.16	9127480.87	788405.24
PI:383	N65° 49' 29"E	26°14'42"	30.00	6.99	13.74	13.62	0.80	0.78	18+609.56	18+602.57	18+616.31	9127491.21	788458.16
PI:384	N27° 53' 33"E	49°37'10"	30.00	13.87	25.98	25.18	3.05	2.77	18+662.76	18+648.89	18+674.87	9127523.59	788500.67
PI:385	N5° 08' 47"E	4°07'38"	150.00	5.40	10.80	10.80	0.10	0.10	18+802.07	18+796.66	18+807.47	9127664.46	788508.26
PI:386	N10° 57' 40"E	7°30'09"	120.00	7.87	15.71	15.70	0.26	0.26	18+865.05	18+857.18	18+872.89	9127726.94	788516.17
PI:387	N13° 26' 47"E	2°31'56"	200.00	4.42	8.84	8.84	0.05	0.05	18+932.70	18+928.28	18+937.11	9127792.39	788533.35
PI:388	N16° 01' 43"E	7°41'49"	120.00	8.07	16.12	16.11	0.27	0.27	19+000.40	18+992.33	19+008.45	9127858.58	788547.64
PI:389	N13° 33' 53"E	12°37'29"	90.00	9.96	19.83	19.79	0.55	0.55	19+039.94	19+029.99	19+049.82	9127895.78	788561.09
PI:390	N15° 06' 19"E	15°42'22"	200.00	27.59	54.82	54.65	1.89	1.88	19+108.74	19+081.15	19+135.98	9127964.11	788569.78
PI:391	N13° 33' 18"E	18°48'24"	60.00	9.94	19.69	19.61	0.82	0.81	19+163.67	19+153.73	19+173.43	9128015.01	788591.35

pág. 103