
UNIVERSIDAD PRIVADA DE TRUJILLO

CARRERA PROFESIONAL DE INGENIERIA CIVIL

DISEÑO DE PAVIMENTO RIGIDO PARA INFRAESTRUCTURA VIAL JR. SUCRE DE LA PROVINCIA DE SAN ROMAN DEPARTAMENTO DE PUNO 2021

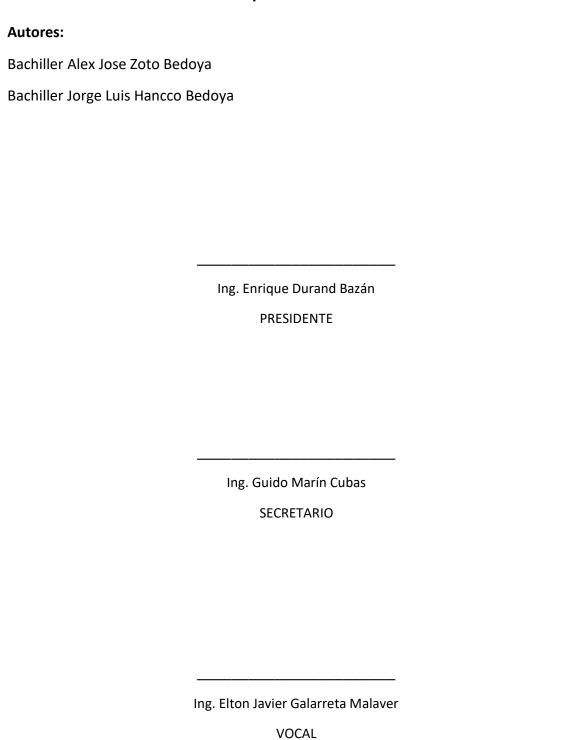
TESIS:

PARA OPTAR EL TITULO PROFESIONAL DE INGENIERO CIVIL

AUTOR:

Bach. Alex Jose Zoto Poma Bach. Jorge Luis Hancco Bedoya

ASESOR:


ING. ENRIQUE MANUEL DURAND BAZAN

TRUJILLO – PERÚ 2021

HOJA DE FIRMAS

Diseño de Pavimento Rígido para Infraestructura Vial Jr. Sucre de la Provincia de San Román Departamento de Puno 2021

INDICE DE CONTENIDOS

DEDICATORIA7
AGRADECIMIENTO8
RESUMEN9
ABSTRACT10
I. INTRODUCCION
1.1. Realidad Problemática11
1.2. Formulación del problema11
1.3. Justificacion del tema12
1.4. Objetivos
1.4.1. Objetivo General12
1.4.2. Objetivos Específicos13
1.5. Antecedentes13
1.6. Bases teóricas15
1.6.1. Definición de pavimento15
1.6.2. Característica de un pavimento15
1.6.3. Tipos de pavimentos15
1.6.4. Fallas comunes en pavimentos rígidos18
1.7. Definición de términos básicos
1.8. Formulación de hipótesis
II. MATERIAL Y METODOS21
2.1. Material21
2.2. Materiales De Estudio
2.2.1. Población

2.2.2. Muestra2	2
2.3. Tecnicas, procedimientos e instrumentos2	2
2.3.1. Tecnica de recolección de datos2	2
2.3.2. Para procesar datos2	3
2.3.3. Operacionalizacion de variables2	3
III. RESULTADOS2	6
3.1. Estudio de Topografía2	6
3.1.1. Ubicación geográfica2	6
3.1.2. Descripción de la vía jr. Sucre2	8
3.1.3. Estudio topográfico	9
3.1.4. Acceso Al Área De Estudio3	1
3.2. Estudio de tráfico vehicular	2
3.3. Proyección de tráfico vehicular3	3
3.4. Resultado de Mecánica de Suelos	5
3.5. Diseño de pavimento para infraestructura vial	7
3.6. Costos y presupuesto3	8
IV.DISCUSIÓN3	9
CONCLUSIONES4	0
REFERENCIAS BIBLIOGRÁFICAS	2

INDICE DE TABLAS

TABLA N° 01 Presupuesto de materiales	21
TABLA N° 02 Presupuesto de recursos humanos	21
TABLA N° 03 Presupuesto de servicios	22
TABLA N° 04 Operacionalizaion de variables	24
TABLA N° 05 Ubicaión geografica	26
TABLA N° 06 Puntos de referencia	31
TABLA N° 07 Accesibilidad de estdio	31
TABLA N° 08 Volumen de flujo vehicular	33
TABLA N° 09 Composicion vehicular	33
TABLA N° 10 Flujo de trafico normal IMDA	35
TABLA N° 11 Puntos de referencia a considerar	36
TABLA N° 12 Presupuesto base	38

INDICE DE FIGURAS

FIGURA N° 01 Paquete estructural pavimento flexible	16
FIGURA N° 02 Seccion transversal del pavimento rigido	17
FIGURA N° 03 Seccion tipica transversal pavimento hibrido	17
FIGURA N° 04 Localizacion nacional	26
FIGURA N° 05 Localizacion regional	27
FIGURA N° 06 Localizacion de calle	27
ANEXOS	
ANEXO N° 01 Panel fotografico	45
ANEXO N° 02 Puntos topograficos	48
ANEXO N° 03 Guia de observacion	64
ANEXO N° 04 Mecanica de suelos	66
ANEXO N° 05 Planos de topografia	79

DEDICATORIA

A Dios, por su inmensa sabiduría, para lograr mis metas y a mis padres por apoyo incondicional.

Alex y Jorge

AGRADECIMIENTO

Con mucha gratitud a la Universidad Privada de Trujillo, por intermedio de docentes quienes compartieron experiencias y conocimientos muy valiosas.

Al asesor de tesis, por su apoyo incondicional en la formulación de proyecto de investigación.

El autor

RESUMEN

La presente tesis denominada Diseño de Pavimento Rígido para Infraestructura Vial Jr. Sucre de la Provincia de San Román Departamento de Puno 2021. tiene como propósito de realizar un diseño adecuado debido al diagnóstico realizado del estado actual de la infraestructura vial en jr. Sucre una longitud de 8.803.11 m2.

La problemática más resaltante se ha determinado que la vía es muy transitada por peatones, una de las vías más principales para el tránsito de vehículos de toda clase, según los estudios se ha determinado que la vía ha sido diseñada con pavimento flexible, con propenso de a la oxidación y debilitamiento por efectos de humedad y factores climatológicos ha colapsado, es la vía más transitada por vehículos y peatones. Por lo tanto, requiere una mejora en diseño adecuado de la infraestructura vial.

Siendo la razón del presente proyecto, se ha realizado estudios básicos para determinar el diseño, en resultado siendo una topografía con 2% de pendiente, en estudios de mecánica de suelos están compuestos de arcilla de mediana plasticidad, arcillas de baja plasticidad, limos de baja plasticidad de tipo CL y algunas gravosas de tipo SP, e valor de CBR mínimo de 11.1%, las vías requieren reemplazar material de la sub rasante y sub base; para la evacuación de aguas pluviales, se recomienda construir cunetas.

Para el presente se ha determinado el diseño de pavimento rígido por las características de durabilidad, mayor tiempo de serviciabilidad, considerándose el método ASSTHO 93 un concreto de losa de f´c=245 kg/cm2.un espesor de 0.20 m. y un concreto de f´c=175 kg/cm² para veredas y cunetas.

Para el presente se estima un presupuesto base de S/ 1.799.986.50 nuevos soles. está sujeto a las actualizaciones de oferta y demanda de requerimientos.

Palabras clave: Diseño de pavimento rígido.

ABSTRACT

The present thesis called Rigid Pavement Design for Jr. Sucre Road Infrastructure of the Province of San Román Department of Puno 2021. Its purpose is to carry out an adequate design due to the diagnosis made of the current state of the road infrastructure in jr. Sucre a length of 8.803.11 m2.

The most outstanding problem has been determined that the road is heavily traveled by pedestrians, one of the main roads for the transit of vehicles of all kinds, according to studies it has been determined that the road has been designed with flexible pavement, prone to Due to oxidation and weakening due to the effects of humidity and climatic factors, it has collapsed, it is the road most traveled by vehicles and pedestrians. Therefore, it requires an improvement in the adequate design of the road infrastructure.

Being the reason for this project, basic studies have been carried out to determine the design, resulting in a topography with 2% slope, in soil mechanics studies they are composed of clay of medium plasticity, clays of low plasticity, silts of low CL-type plasticity and some SP-type gravel, and a minimum CBR value of 11.1%, the roads require replacing material from the subgrade and subbase; for the evacuation of rainwater, it is recommended to build gutters.

For the present, the rigid pavement design has been determined by the characteristics of durability, longer service life, considering the ASSTHO 93 method a slab concrete of f'c = 245 kg / cm², a thickness of 0.20 m. and a concrete of f'c = 175 kg / cm² for sidewalks and gutters.

For the present, a base budget of S / 1,799,986.50 nuevos soles is estimated. is subject to supply and demand updates of requirements.

Keywords: Rigid pavement design.

I. INTRODUCCION

1.1. Realidad Problemática

La realidad en el mundo global, al pasar de los tiempos, el crecimiento del sector transporte es cada vez más progresivo, y así mismo la infraestructura vial es muy importante para una serviciabilidad con mayor durabilidad. Es así como en Latinoamérica se evidencia. Los países vecinos de Colombia utilizan un diseño de pavimentos de concreto de alta rigidez que transmitan al suelo las cargas y esfuerzos, para ello es necesario un buen criterios técnicos

Las condiciones de infraestructura y los servicios de transporte en el Perú, son fuente primordial que permite el desarrollo económico, necesitan ser más atendidos con seguridad, limpios y accesibles.

En la ciudad de Juliaca en los últimos tiempos debido al crecimiento del sector transporte y poblacional, se encuentra con serios problemas, se ha determinado en estudios preliminares que la infraestructura vial jr, sucre se encuentra en un estado de colapso, debido a la oxidación y debilitamiento por efectos de humedad y factores climatológicos de abundancia de precipitaciones pluviales se vienen generando deterioros de pavimento flexible existente, cubiertos con masas de tierra ocasionando la acumulación de lodo y agua en épocas de lluvia, los cuales generan dificultades del tránsito vehicular y peatonal.

1.2. Formulación del problema

Pregunta general

¿Cuál es el diseño de pavimento adecuado para calle jirón Sucre de la provincia de san Román, departamento de puno 2021?

Preguntas especiales

¿Cuál es la característica actual del estado de la vía de pavimento flexible existente Jr. Sucre?

¿Cuál son los estudios básicos a realizar para determinar el diseño adecuado para calle Jr. sucre?

¿Cuál es el espesor del diseño del pavimento rígido?

¿Cuál es el costo estimado como propuesta de solución para su posterior ejecución?

1.3. Justificacion del tema.

La infraestructura vial en nuestros tiempos es un aspecto muy importante en el crecimiento de la población y transporte vehicular, por una mejor calidad de vida y segura. Dada que la situación crítica determinada en estudios preliminares una de los problemas más resaltantes es que la vía es más transitada por vehículos y peatonales, en un estado malo, colapsado por el tiempo de uso y topografía con pendiente a mejorar, según los estudios básicos y desde un punto de vista operativo se requiere demolición y realizar un pavimento con diseño adecuado para garantizar una vía segura y resistente a las cargas, que será en beneficio de la población juliaqueña.

Desde esta perspectiva como investigadores planteamos a dar una solución alternativa de construcción de con un diseño de pavimento rígido adecuado, de esta manera garantizar la serviciabilidad transitable y con años de durabilidad.

1.4. Objetivos

1.4.1. Objetivo General.

Determinar el diseño de pavimento rígido para calle jr. Sucre de la provincia de san Román, departamento de Puno 2020.

1.4.2. Objetivos Específicos.

- Realizar el diagnostico situacional del estado actual de la vía del pavimento flexible existente Jr. Sucre.
- Realizar el estudio básico de topografía, mecánica de suelos, estudio de tráfico vehicular.
- Diseñar el espesor del pavimento rígido.
- Estimar el costo como propuesta de solución en su posterior ejecución.

1.5. Antecedentes

Antecedentes internacionales

Gaspar, R. (2010). En su tesis para optar título de pregrado en ingeniería civil denominada Diseño de pavimento rígido del camino que conduce a la aldea el Guayabal, municipio de estanzuela del departamento de Zacapa, tuvo como objetivo principal de investigar las necesidades prioritarias de infraestructura como diseño de la pavimentación de la aldea, siendo una longitud de 5,755 m. Para ello aplico la metodología simplificado de PCA, como resultado ha llegado en determinar el espesor de diseño del pavimento rígido de 15 cm. una subbase de 15 cm. Y un bombeo de 2%. Este antecedente para la presente investigación se ha tomado por su importancia y tomar decisiones de tipo de diseño para vías de mucho tráfico vehicular y de acuerdo a la zona.

Mora & Arguelles. (2010). En su tesis para optar título de especialista en ingeniería de pavimentos denominada Diseño y construcción de pavimento rígido para la urbanización Caballero y Góngora, municipio de Honda – Tolima, tuvo como objetivo principal definir una estructura de pavimento rígido la cual garantice la resistencia a la acción de cargas impuestas por el tránsito

en las vías de la urbanización Caballero y Góngora del municipio de Honda – Tolima. Aplicando la metodología PCA 84, tuvo Como resultado y concluye que si garantiza el diseño de pavimento rígido con una resistencia a cargas según el estudio de tránsito y el espesor de la losa cumple con los parámetros de fatiga y erosión. El antecedente sirvió para determinar el tipo de diseño que depende de la fluidez de transito según la característica de la ciudad y factores climatológicos.

Antecedentes nacionales

Mayta, J. (2019). En su tesis para optar título de pregrado en ingeniería civil denominada Diseño de estructura de pavimento rígido para mejoramiento de principales vías de la UU.VV. pochoccota en la provincia de Andahuaylas región Apurímac, se ha planteado como objetivo de establecer módulo de diseño del concreto y determinar el espesor de pavimento rígido, para ello con la aplicación de metodología de AASHTO y PCA ha determinado el tipo de pavimento según los estudios básicos, como resultado obtiene el Modulo de Diseño de concreto de 23.10 kg/cm2, el espesor de pavimento rígido = 20 cm. de base más sub base = 40 cm. como antecedente se ha considerado para el presente investigación debido a su importancia que resalta, que para un buen diseño adecuado, se debe de realizar los estudios de topografía, tráfico vehicular, diagnostico situacional, estudio de suelo, para determinar el tipo de diseño.

Calla, E. (2015). En su tesis para optar título de pregrado en ingeniería civil denominada pavimentación de los jirones achaya, manco capac, conde lemus, Arica y puno de la municipalidad distrital de caminaca – Azángaro. El autor tuvo como objetivo de elaborar el diseño definitivo de pavimentación en los jirones achaya, manco capac, conde lemus, Arica y puno de la municipalidad distrital de caminaca – Azángaro. Con la aplicación de AASHTO 93 y ESAL ha determinado según los estudios llevados que para un pavimento rígido obedece al cálculo de tráfico vehicular, peatonal y zona con mucha precipitación pluvial, para ello ha tomado la decisión de un espesor de 2 cm. De losa, subbase granular de 20 cm. Acumulando un espesor total de 40 cm. Para lo cual realizo estudio topográfico, análisis de suelo, determinar el

volumen de tránsito, impacto ambiental. como antecedente se consideró por su importancia de tipo de pavimento que recomienda para suelos con plasticidad, y no la flexible. como referencia me permite a tomar decisiones con un criterio técnico adecuado en la investigación.

1.6. Bases teóricas

1.6.1. Definición de pavimento

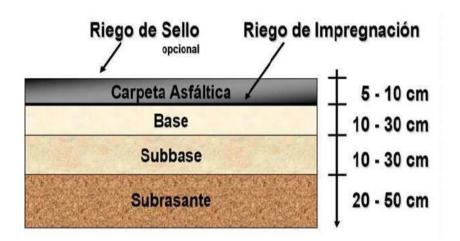
Es una estructura que resiste cargas distribuidas concentradas, de tal forma que el suelo pueda soportar sin deformación excesiva.

1.6.2. Característica de un pavimento

Debe de reunir los siguientes:

- Tener resistencia a la acción de las cargas.
- Textura visible.
- Suficiente resistente a la absorción producidas por las llantas de rodadura.
- Presentar uniformidad longitudinal y transversal.
- Durabilidad necesaria.
- Debe ser económico.
- Color adecuado para evitar reflejos y deslumbramiento.

1.6.3. Tipos de pavimentos


Gaspar (2010). Señala que existe dos tipos clásicos de pavimento rígido y flexible, siendo la principal deficiencia en la distribución de la carga.

a. Pavimento flexible o asfaltico. - Está constituida por estructura o carpeta asfáltica en la superficie de rodamiento, diseñados para soportar las cargas repetidas del tránsito. Está conformado por carpeta asfáltica, base, subbase, subrasante.

Este tipo de pavimento resulta ser más económica, tiene un periodo de vida ente 10 a 15 años, con la desventaja de requerir mantenimiento periódico para cumplir con su vida útil.

FIGURA 01: Paquete estructura pavimento flexible

b. **Pavimento rígido**. - Son estructuras formados por una losa de concreto portland sobre una base sub-rasante. Transmiten directamente los esfuerzos al suelo en una forma minimizada.

Está conformada por:

Subrasante

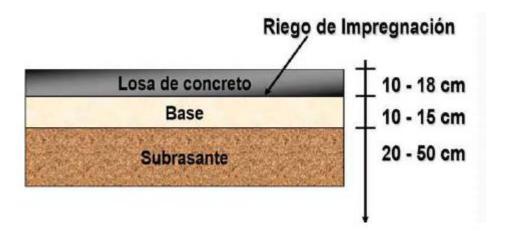
Es el soporte natural, preparado y compactado, su función es dar un apoyo razonable uniforme, sin cambios bruscos en soporte.

Subbase

Es la porción de la estructura que se encuentra entre la subrasante y la losa rígida. Consiste de una o más capas compactadas de material granular o estabilizado, siendo su función principal prevenir el bombeo de los suelos de granos finos.

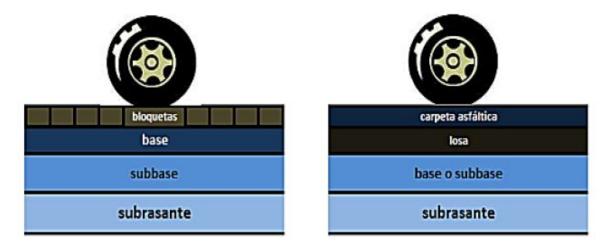
Entre otras funciones que debe cumplir son:

- 1. Proporcionar uniformidad, estabilidad y soporte uniforme.
- 2. Incrementar el módulo (K) de reacción de la subrasante.
- 3. Minimizar los efectos dañinos de la acción de las heladas.
- 4. Proveer drenaje cuando sea necesario.
- 5. Proporcionar una plataforma de trabajo para los equipos de construcción.


Losa

Es el concreto portland, tiene un periodo de vida entre 20 a 40 años, con un mantenimiento mínimo, generalmente al tratamiento de juntas de las losas.

Económicamente tiene un costo inicial más elevado que el pavimento flexible.


FIGRA Nº 02: Sección transversal del pavimento rígido

c. Pavimento hibrido o mixto. - Es una combinación de pavimentos flexible y rígido. Por ejemplo, cuando se colocan bloquetas de concreto en lugar de la carpeta asfáltica, se tiene un tipo de pavimento híbrido. Ver figura 3. Es ideal para zonas urbanas, pues garantiza seguridad y comodidad para los usuarios.

Otro ejemplo de pavimento mixto, son aquellos pavimentos de superficie asfáltica construidos sobre pavimento rígido. Ver figura 3. Este pavimento, trae consigo un tipo particular de falla, llamada fisura de reflexión de junta.

FIGURA Na 3: Sección típica transversal pavimento hibrido

1.6.4. Fallas comunes en pavimentos rígidos

a) Fisura transversal o diagonal

Fracturamiento de la losa que ocurre aproximadamente perpendicular al eje del pavimento, o en forma oblicua a este, dividiendo la misma en dos planos.

b) Fisura Longitudinal

Fracturamiento de la losa que ocurre aproximadamente paralela al eje de la carretera, dividiendo la misma en dos planos.

c) Fisura de Esquina.

Es una fisura que intersecta la junta o borde que delimita la losa a una distancia menor de 1.30 m a cada lado medida desde la esquina. Las fisuras de esquina se extienden verticalmente a través de todo el espesor de la losa.

d) Losas subdivididas.

Fracturamiento de la losa de concreto conformando una malla amplia, combinando fisuras longitudinales, transversales y/o diagonales, subdividiendo la losa en cuatro o más planos.

e) Fisuras en Bloque.

Fracturamiento que subdividen generalmente una porción de la losa en planos o bloque pequeños de área inferior a 1 metro cuadrado.

f) Levantamiento de losas

Sobre-elevación abrupta de la superficie del pavimento, localizada generalmente en zonas contiguas a una junta o fisura transversal.

g) Dislocamiento

Es una falla provocada por el tránsito en la que una losa del pavimento a un lado de una junta presenta un desnivel con respecto a

una losa vecina; también puede manifestarse en correspondencia con fisuras.

h) Hundimiento

Depresión o descenso de la superficie del pavimento en un área localizada del mismo; puede estar acompañado de un fisuramiento significativo, debido al asentamiento del pavimento.

i) Descascaramiento y fisuras capilares

Descascaramiento es la rotura de la superficie de la losa hasta una profundidad del orden de 5 a 15 mm, por desprendimiento de pequeños trozos de concreto. Por fisuras capilares se refiere a una malla o red de fisuras superficiales muy finas, que se extiende solo a la superficie del concreto. Las mismas que tienden a intersectarse en ángulos de 120°.

j) Pulimiento de la superficie

Superficie de rodamiento excesivamente lisa por efecto del pulimiento de los agregados que la componen.

k) Peladuras

Progresiva desintegración de la superficie del pavimento por pérdida de material fino desprendido de matriz arena cemento del concreto, provocando una superficie de rodamiento rugosa y eventualmente pequeñas cavidades.

I) Bache.

Descomposición o desintegración la losa de concreto y su remoción en una cierta área, formando una cavidad de bordes irregulares.

1.7. Definición de términos básicos

Acera o vereda

Parte de la vía urbana situada entre la pista y el límite de propiedad, destinada al uso peatonal.

Afirmado

Capa de material selecto procesado de acuerdo a diseño, que se coloca sobre la subrasante o sub-base de un pavimento.

Diseño

Constituido por una delineación con el fin de proyectar un objeto u obra.

1.8. Formulación de hipótesis

la investigación descriptiva no siempre es necesario formular una hipótesis, dada la circunstancia se formula de la siguiente:

a. Hipótesis general: Hi

Se Determinará el diseño de pavimento rígido adecuado para calle jr. Sucre de la provincia de san Román, departamento de Puno 2020

b. Hipótesis específicas: Ha

HE1: Se Realizará el diagnostico situacional del estado actual de la vía del pavimento flexible existente jr. Sucre

HE2: Se Realizará el estudio básico de topografía, mecánica de suelos, hidrología y ambiental de la vía.

HE3: Se diseñará el espesor del pavimento rígido.

HE4: Se Estimará el costo como propuesta de solución en su posterior ejecución.

II. MATERIAL Y METODOS

2.1. Material:

TABLA N° 01: Presupuesto - Materiales

DESCRIPCION	UNID	CANTIDAD	PRECIO	PARCIAL
Combustible	Glb.	1.00	150.00	150.00
Estación Total	нн	1.00	100.00	100.00
Gps	Unid.	0.00	000.00	00.00
Jalones	Día.	1.00	30.00	30.00
Útiles de Oficina	Glb.	1.00	100.00	100.00
Gps Diferencial	Día	0.00	000.00	000.00
	TOTAL DE PRESU	JP'UESTO		380.00

Fuente: Elaboración Propia

TABLA N° 02: Presupuesto – Recursos Humanos

DESCRIPCION	UNID	CANTIDAD	PRECIO	PARCIAL
Investigador	Mes	1.00	0.00	0.00
Docente de la Facultad	Mes	1.00	0.00	0.00
Topógrafo	Mes	1.00	1500.00	1, 500.00
TOTAL	1.500.00			

Fuente: Elaboración Propia

TABLA N° 03: Presupuesto – Servicios

DESCRIPCION	UNI D.	CANTIDAD	PRECIO	PARCIAL
Empastados Y Anillados	Und.	5.00	40.00	200.00
Agua Y Luz	Glb.	1.00	235.00	235.00
Internet	Mes	2.00	150.00	300.00
Red Móvil	Mes	1.00	89.00	89.00
Viáticos	Mes	10.00	40.00	400.00
TOTAL DE PRESUP'UES	1,224.00			

Fuente: Elaboración Propia

2.2. Materiales De Estudio

2.2.1. Población

Tramos que articulan a jr. Sucre del distrito de Juliaca, provincia de san Román. Siendo una longitud de 8,803.11 m2

2.2.2. Muestra

Según el diseño no se trabaja con muestra, porque es de carácter no probabilístico. El muestreo es por conveniencia, son seleccionadas por que son accesibles para el investigador.

2.3. Tecnicas, procedimientos e instrumentos.

2.3.1. Tecnica de recolección de datos

Es el procedimiento por el cual el investigador recoge información necesaria en función a los objetivos del estudio.

Para este caso se utilizan las siguientes:

a. Técnica: la Observación

Observación directa para estudio de tramos, porque permite registrar de manera directa visual en el insitu se describe y se realiza el análisis en gabinete las bibliografías, que es la fuente más relacionado y de apoyo. se cita en anexo 01 con mayor detalle.

b. Instrumentos de recolección de datos

Los instrumentos que apoyan durante la investigación es la guía de observación, se detalla en anexo 03, fuentes de información, estudios básicos de topografía, anexo 02, tráfico vehicular, ensayos de laboratorio de suelos, anexo 04.

Por la caracterices de la investigación descriptiva no se trabaja con variables, solo se tiene variable única. para valides externo del instrumento se basa según la normatividad establecida los parámetros y criterios técnicos de DG – 2018. Realizado en campo, guía de observación, el levantamiento topográfico y análisis de tráfico vehicular.

2.3.2. Para procesar datos.

Se procesará la información recaudada en gabinete en hoja de cálculo Excel, estudios de tráfico vehicular, estudios de topografía, mecánica de suelos

Uso de computadora y programas de apoyo.

Cuaderno de campo

Fotografías. Anexo 01 mayor detalle evidenciado

2.3.3. Operacionalizacion de variables.

Variable de estudio

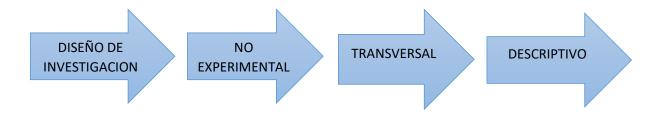
Diseño de pavimento rígido

Consiste en diseñar pavimento adecuado para la infraestructura vial de la calle jr. Sucre para una mejora transitabilidad vehicular y peatonal

TABLA N°04: Operacionalización de variables.

Variables	Definición Conceptual	Definición Operacional	Dimensiones	Indicadores	Items				
	ortland sobre una base al suelo en una forma a	Recaudación de información	Antecedentes	Datos históricos Diseño geométrico de carreteras					
			e los esfuerzos al nte, Subbase, losa tre, Subbase, losa	Estudio Topográfico	Planimetría	Mediciones horizontales y verticales			
	oncreto p sfuerzos base, los				Topogranico	Altimetría	Perfiles longitudinales		
Diseño de	Diseño de Pavimento rígido Rasaute, Subt				Sub	Subj		Granulometría	Tamices
					Estudios de	Límite de consistencia	ASHTO 93 y ASTMD 5821		
	s por un directan or: Subr					Contenido de humedad	Proctor modificado		
	nados niten ada p			CBR	ASHTO 93				
	ructuras form ante. Transm ada conforma						ructuras 10rm ante. Transm ada conforma	Diseño de pavimento	IMDA
	Son estructu sub-rasante. minimizada c		Metrados	Costos unitarios	Procesar mediante s10				

Fuente: Elaboración Propia.



Tipo de estudio

Según el tipo de estudio es o experimental, porque permite describir un proceso, no se manipula las variables, se plantean los objetivos y permite describir los procesos

Diseño de investigación

Según el tipo de investigación es No experimental - descriptivo, porque se observan y describen los hechos en forma natural, asimismo corresponde a un diseño transversal por que se realiza en un periodo definido en el año 2020.

Línea de investigación: Ciudades e infraestructura sostenible.

Área: Transporte y Diseño urbano sostenible.

III.RESULTADOS

3.1. Estudio de Topografía

3.1.1. Ubicación geográfica

TABLA N° 05: Ubicación geográfica

Donartamento	Puno
Departamento	Pullo
Provincia	San Román
Distrito	Juliaca
Distrito	Juliada
Luaren	lu accesa
Lugar	Jr. sucre
Región	Sierra
Región Geográfica	

Fuente: Division politica

FIGURA Na 4: Localización nacional

FIGURA Nº 5: Localización regional

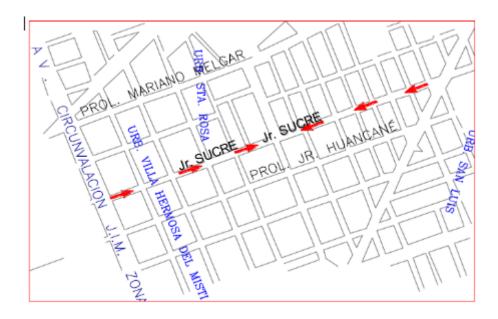



FIGURA Nº 6: Localización de calle

3.1.2. Descripción de la vía jr. Sucre

Estado Actual de las Vías y sus Implicancias en la Población del área de influencia directa e indirecta: - En el área de influencia directa e indirecta; todas las viviendas cuentan con el 100% de viviendas consolidadas en su totalidad, con el saneamiento físico legal y la habilitación Urbana correspondiente.

Jirón sucre con inadecuada calzada. veredas obras complementarias y otras afectan directamente a los habitantes que viven en el margen izquierdo y derecho de la vía. Según las entrevistas directas realizadas a las familias que viven en el tramo Avenida Circunvalación – Avenida Tambopata; nos indican que los índices de contaminación ambiental aumentan, dificulta desplazamiento normal de los vehículos y peatones. También indican que la contaminación del aire es por las emisiones de partículas de tierra suspendidas el cual genera incidenci a de enfermedades respiratorias; ocasionando casos de mortalidad infantil en el área de estudio del proyecto.

Asimismo; el deterioro de las viviendas proviene del polvo que afectan a las personas; es decir las viviendas se ven afectadas por la polvadera que los vehículos que transitan, los incrementos en los costos de conservación de las viviendas son elevados. Principalmente se ven afectados las fachadas de las viviendas, por el polvo y el barro, las paredes internas y externa, el cielo raso entre otros.

Las enfermedades respiratorias causadas por la emisión de partículas de polvo, afectan directamente a los habitantes de las viviendas. Así mismo; aquellos que permanecen mayor tiempo en la calle.

En cuanto a la accesibilidad, la carencia de calzada pavimentada, veredas adecuadas y existencia de obras complementarias; trae como consecuencia las restri cciones en Mejoramiento del Servicio de Infraestructura Vial y Peatonal en el Jr. Lambayeque Pág. 022

los transportes urbanos de pasajeros; lo que ocasiona a la población elevados costos de transportes urbanos; la población con la finalidad de acceder a los servicios de educación, salud centros de abastos (Mercado Túpac Amaru, Pedro Vilcapaza) tienen que efectuar la caminata a pie.

Como resultado del recorrido y evaluación del área de influencia directa a intervenir, se ha identificado las siguientes deficiencias en los Jirones que se va a intervenir con el proyecto:

Por lo tanto, se ha identificado causas:

- a) Causa Directa: De acuerdo al diagnóstico realizado; se tiene que la causa principal es: Deficiente Estado de la Infraestructura Vial por la pérdida de superficie de la Calzada, veredas y obras complementarias que se traduce en deterioro de la calzada en el tramo Av. Circunvalación – Av. Perú y Av. Perú – Av. Tambopata carencia de calzada, inexistencia de veredas y obras complementarias en el tramo a intervenir.
- b) Causa Indirecta: Del diagnóstico realizado; se tiene como causa indirecto los siguientes:
 - Inadecuada Calzada para el tránsito de vehículos; que se traduce que la vía se encuentra en mal estado de conservación.
 - Carencia de veredas para el tránsito del peatón; que se traduce que el espacio para el peatón se encuentra en mal estado de conservación.
 - Inexistencia de obras complementarias y arte en la vía (cunetas laterales, señalización vial); que no se cuenta con obras de arte ni drenaje pluvial, por lo que se impide la normal evacuación del agua pluvial hacia las zonas bajas.

3.1.3. Estudio topográfico

El terreno presenta una topografía plana, con una pendiente de 1% a 2% aproximadamente. En los meses de invierno debido a las

constantes lluvias se obstruyen la infraestructura vehicular y peatonal, los sistemas de drenaje debido al ingreso de barros y lodos por el tipo de superficie que es de tierra y la pendiente regular las vías se obstruyen constantemente.

Según los estudios topográficos iniciándose en las vías de la ciudad de Juliaca, con pendientes negativa de 0.6X1000 con dirección de Sur a Nor-Este, observándose la misma topografía a lo largo de las vías de ciudad de la proyectada. Se ha considerado para la intervención del proyecto es de 8,803.11 m2, de los cuales se tiene los siguientes a intervenir, siendo las progresivas ubicadas:

- Jr. Sucre (Av. Circunvalación Jr. Miraflores) (desde 0+000.00 hasta 0+086.32), el ancho de vía es de 9.20 m.
- Jr. Sucre (Jr. Miraflores Jr. San Agustín) (desde 0+096.36 hasta 0+169.67), el ancho de vía es de 9.20 m.
- Jr. Sucre (Jr. San Agustín Av. Perú) (desde 0+180.20 hasta 0+460.07), el ancho de vía es de 9.20 m.
- Jr. Sucre (Av. Perú Av. Tambopata) (desde 0+478.75 hasta 0+920.12), el ancho de vía es de 9.20 m.
- Construcción de veredas + sardineles, con un metrado de 3,111.91 m2; concreto de resistencia f´c=175 Kg/cm2, el ancho mínimo es de 1.31 metros.
- Construcción de cunetas laterales tipo I, con un metrado de 867.97
 m2; concreto de resistencia f'c=175 Kg/cm2 y ancho 0.50 m.
- Construcción de cunetas laterales tipo II, con un metrado de 206.42
 m2; concreto de resistencia f'c=210 Kg/cm2 y ancho 1.00 m.
- Implementación de señalización horizontal, con un metrado de 458.58
 m2.
- Implementación de señalización vertical, con un metrado de 48 und.

Por lo tanto, La nivelación debe efectuarse por método de nivelación doble o serrada como puntos de cambio, se pueden usar estacas de

fierro como placas metálicas u objetos que se encuentran en el terreno, cuya estabilidad sea confiable.

El área de estudio está enmarcada entre las siguientes:

- Sistema de medida : Coordenadas UTM

- Datum : WGS-84

- Zona : 19 L

TABLA N° 06: Puntos de referencia

PUNTOS	NORTE (Y)	ESTE (X)	COTA	DESCRIPCION
BM-01	8288178.990	380534.930	3832.560	Jr. SUCRE ESQUINA CON JR. SILLUSTANI (sobre la verada)
BM-02	8288118.260	380370.000	3832.720	Jr. SUCRE ESQUINA CON Jr. VILQUECHICO (sobre la vereda)
BM-03	8288033.660	380127.740	3833.010	Jr. SUCRE ESQUINA CON AV. PERU (sobre el separador central)

Fuente: trabajo en campo

3.1.4. Acceso Al Área De Estudio

Para llegar al área de estudio se debe seguir el siguiente trayecto:

TABLA N° 07: Accesibilidad de estudio

RECORRIDO	DISTANCIA	VIA	TIEMPO	MEDIO DE TRANSPORTE EXISTENTE
De Plaza Armas de Juliaca	1.501 Km	Calles asfaltadas	15 minutos	Servicio de transporte urbano

Fuente: MPSR

3.2. Estudio de tráfico vehicular

Para el presente estudio se ha realizado el conteo del flujo vehicular el día lunes 23, miércoles 25 y sábado 28 de octubre del año 2020; que ha tenido como finalidad determinar el flujo vehicular de la vía a intervenir y que permita establecer la demanda vehicular actual y a partir de ello realizar las proyecciones durante el horizonte de evaluación del proyecto.

Para el estudio de conteo vehicular ha sido necesario identificar in situ, los lugares de ubicación de puntos a considerar son 03 puntos; por lo tanto, la demanda del servicio fue obtenido en base a la información de campo realizado por el responsable; consistió en el conteo del flujo vehicular durante los 03 días de la semana, las 12 horas del día el mismo que se realizó entre lunes, miércoles y sábado de octubre del 2020.

a. Volumen Vehicular

El Volumen de tráfico diario se obtuvo de la suma del conteo de los vehículos en ambas direcciones, el cual nos han permitido identificar 09 sentidos y tener una idea más usual del tipo y cantidad de vehículos que transitan diariamente.

En este Jirón sucre la demanda está constituida por el flujo vehicular en la situación actual; el que se define como el número de vehículos promedio anual que circulan diariamente por la vía. Los vehículos corresponden a una tipología específica general de categorías. Del conteo realizado en los puntos identificados ubicados a lo largo del tramo se obtuvieron los datos que se muestran en el siguiente Cuadro.

TABLA Na 08: Volumen del flujo vehicular

FECHA DE AFORO		SENTIDO							TOTAL	
	Sentido									
	1	2	3	4	5	6	7	8	9	
Lunes de 23 octubre	3,757	3,757	3,757	3,757	3,757	3,757	3,757	3,757	3,757	33,809
2020										
Miércoles de 25	1,103	796	970	5,430	5,430	5,430	5,430	3,452	3,452	31,493
octubre 2020										
Sábado de 28 octubre	1,371	574	729	793	761	233	239	187	130	5,018
2020										
TOTAL	2,474	1,370	1,699	6,223	6,191	5,663	5,669	3,639	3,582	36,510

Fuente: Trabajo en campo

b. Composición Vehicular

El flujo vehicular registrado en el estudio de tráfico vehicular se encuentra clasificado por tipo de vehículos, así la composición vehicular en el área de influencia directa del proyecto comprende una distribución al tipo de vehículos que resulta más representativos.

TABLA Nº 09: composición vehicular

Periodo Horario	Autom oviles	Taxis Ocupados	Taxis Vacios	Camioneta Rural	Microbuces	Omnibuces		District	
	Pàrticulares					2E	3E	Biciclos	Total
	1.00	1.00	1.00	1.50	2.00	3.00	3.00	0.20	
[08:00 - 09:00]	1085.00	1019.00	928.00	975.00	128.00	82.00	90.00	868.00	5440.1
[09:00 - 10:00]	1303.00	1235.00	1148.00	1193.00	126.00	84.00	92.00	880.00	6431.5
[10:00 - 11:00]	1040.00	991.00	910.00	954.00	136.00	83.00	93.00	822.00	5336.4
[11:00 - 12:00]	1327.00	1292.00	1219.00	1265.00	132.00	85.00	91.00	720.00	6671.5
[12:00 - 13:00]	1298.00	1262.00	1214.00	1264.00	126.00	86.00	93.00	667.00	6592.4
[13:00 - 14:00]	1160.00	1110.00	1044.00	1101.00	142.00	85.00	91.00	729.00	5923.3
[14:00 - 15:00]	1181.00	1117.00	1057.00	1100.00	122.00	87.00	92.00	774.00	5940.8
[15:00 - 16:00]	1730.00	1666.00	1591.00	1641.00	141.00	83.00	92.00	750.00	8405.5
[16:00 - 17:00]	1241.00	1182.00	1097.00	1140.00	119.00	86.00	92.00	871.00	6176.2
[17:00 - 18:00]	1146.00	1080.00	994.00	1028.00	124.00	83.00	90.00	843.00	5697.6
[18:00 - 19:00]	1156.00	1102.00	996.00	1029.00	136.00	84.00	91.00	967.00	5787.9
[19:00 - 20:00]	1229.00	1174.00	1059.00	1103.00	144.00	85.00	91.00	952.00	6122.9
	14896	14230	13257	13793	1576	1013	1098	9843	74526.1

Fuente: Trabajo en campo

3.3. Proyección de tráfico vehicular

Para realizar la proyección del tráfico en el Jirón sucre tramo Av. Circunvalación – Av. Tambopata bajo estudio, teniendo en cuenta que no se dispone de series históricas, la proyección de ha determinado en función de variables explicativas de demanda. Para el caso de Automóviles Particulares, Taxis Ocupados, Taxis Vacíos, Camioneta Rural se utiliza la Tasa de

Crecimiento del Parque Veh Autos de 2.00%, para el caso de Microbuses, Ómnibus se utiliza la tasa de crecimiento del Parque Veh Microbus de 1.50% Tasa de crecimiento Inter Censal 2017 de 3.04%

Tráfico Normal: - La demanda actual de tramo Av. Circunvalación — Av. Tambopata; en estudio está representada por el volumen vehicular promedio que transita por el Jirón sucre; para el proyecto se estima con las tasas de ocupación promedio de los vehículos según categoría de transportes público; el cual corresponde a una medida de los viajes que se realizan en un periodo y lugar determinado.

Para el proyecto el volumen vehicular se denomina flujo, el cual corresponde a la medida de los viajes que realizan en el lugar determinados como sentidos. En el estudio se utilizan diferentes valores medios según el día. Es decir, un flujo medio para el periodo punta (peak, pico) de la mañana, otro para el periodo punta de la tarde y otra fuera de la punta.

Para el estudio del perfil del proyecto, para la determinación de la demanda actual se ha realizado conteos de flujos vehiculares definiendo la semana y tipo de vehículos que son representativas a un año; en lo que se refiere a flujos y movimiento vehicular promedio, se ha considerado una semana para obtener variaciones tendenciales de orden horario y diario, que son principales para el proyecto, es decir la semana representativa del año base para medir los flujos son dos días laborables de 8.00 am a 8.00 pm (Lunes y Miércoles), Sábado, de 8.00 am a 8.00 pm.

La cuantificación de los flujos vehiculares se ha realizado en los días horas indicados, subdividiéndolas en periodos de 15 minutos y por categoría de vehículos. Para efectos de cuantificar los flujos se ha expresado en vehículos equivalentes con los factores de categoría de vehículos.

Para determinar demanda en la situación "Sin Proyecto" tráfico normal; para todos los tipos de vehículos se ha utilizado la tasa de crecimiento poblacional urbano, parque vehículo autos, parque vehículo microbús, crecimiento PBI. Así mismo se considera un horizonte de proyecto de 10 años

TABLA Na 10: Flujo de tráfico normal IMDA (Veh/dia)

Año	Autom oviles	Taxis	Taxis Vacios	Camioneta Rural	Microbuces -	Omnibuces		Biciclos	
Pa	Pàrticulares	Ocupados				2E	3E	Dicicios	Veq
	1.00	1.00	1.00	1.50	2.00	3.00	3.00	0.20	
0	14896	14230	13257	13793	1576	1013	1098	9843	74526
1	15194	14515	13522	14069	1600	1028	1114	10142	75989
2	15498	14805	13792	14350	1624	1043	1131	10450	77480
3	15808	15101	14068	14637	1648	1059	1148	10767	79003
4	16124	15403	14349	14930	1673	1075	1165	11094	80556
5	16446	15711	14636	15229	1698	1091	1182	11431	82138
6	16775	16025	14929	15534	1723	1107	1200	11778	83753
7	17111	16346	15228	15845	1749	1124	1218	12136	85404
8	17453	16673	15533	16162	1775	1141	1236	12504	87084
9	17802	17006	15844	16485	1802	1158	1255	12884	88799
10	18158	17346	16161	16815	1829	1175	1274	13275	90548

Análisis de oferta

La Oferta actual para el tránsito vehicular y peatonal está dada por la actual vía del Jirón sucre que brinda una restringida e inadecuada transitabilidad para el flujo vehicular y peatonal en el área de influencia directa del proyecto; por lo que surge la necesidad de ejecutar el proyecto para solucionar el problema identificado.

3.4. Resultado de Mecánica de Suelos

Según el estudio de mecánica de suelos se tiene las siguientes conclusiones: Los suelos de fundación están compuestos de arcillas de mediana plasticidad, arcillas de baja plasticidad, limos de baja plasticidad de tipo CL y algunas gravosas de tipo SP.

El valor de CBR mínimo es de 11.10 % (según el estudio de mecánica de suelos adjunto al presente expediente técnico: estudios específicos). Mayor detalle en anexo

Las canteras para la sub base es la mezcla de 50% de Taparachi con 50% de hormigón de Isla, esta mezcla cumple con las características físico mecánicas para la sub base.

Los agregados para la elaboración del concreto se emplearán los áridos de la cantera Isla, que cumplen los requerimientos físicos mecánicos y químicos para la preparación del concreto.

 A lo largo del Jr. Sucre tramo Av. Circunvalación - Av. Tambopata existe BMs con las siguientes características:

TABLA Na 11: Puntos de referencia a considerar

PUNTOS	NORTE (Y)	ESTE (X)	СОТА	DESCRIPCION
BM-01	8288014.190	380117.786	3832.825	Jr. LAMBAYEQUE ESQUINA CON AV. PERU (sobre la verada)
BM-02	8288071.233	380239.717	3832.788	Jr. LAMBAYEQUE ESQUINA CON Jr. VALCARCEL (sobre la vereda)

Fuente: Trabajo en campo

- Las vías donde se requieren reemplazar material de la sub rasante y sub base son las siguientes:
 - Jr. Sucre (Av. Circunvalación Jr. Miraflores) (desde 0+000.00 hasta 0+086.32), Jr. Sucre (Jr. Miraflores Jr. San Agustín) (desde 0+096.36 hasta 0+169.67), Jr. Sucre (Jr. San Agustín Av. Perú) (desde 0+180.20 hasta 0+460.07), Jr. Sucre (Av. Perú Av. Tambopata) (desde 0+478.75 hasta 0+920.12), para ello se realizará el corte de terreno respetando los planos de perfil longitudinal y posteriormente será rellenado con material adecuado en el orden que a continuación se detalla: la sub rasante será pedraplenado con un espesor de 0.50 metros; seguidamente se conformará la sub base con un espesor de 0.20 metros (50% material ligante+50% hormigón); la sub base será compactado al 100% de la máxima densidad seca en el ensayo próctor modificado, y finalmente se colocará el pavimento rígido de 0.20 metros.
- Las veredas a reconstruir tienen un ancho mínimo de 1.31 metros, destinado para tránsito peatonal, el concreto a utilizar es de resistencia f'c=175 kg/cm2, en ella se ejecutará el bruñado, coloreado como indican los planos. Los sardineles llevan un ancho de 0.15 metros, altura 0.40 metros, el concreto a utilizar es de resistencia f'c=175 kg/cm2.
- Para la evacuación de aguas pluviales, se propone la construcción de cuneta tipo I de ancho 0.50 m. y espesor variable (0.16-0.20 mts.); el concreto a utilizar es de resistencia f'c=175 kg/cm2., en la intersección de las vías se propone la construcción de cuneta tipo II de ancho 1.00 m. y espesor 0.20 mts.; el concreto a utilizar es de resistencia f'c=210 kg/cm2. Las cunetas servirán para la evacuación de aguas pluviales; una pendiente adecuada no permite la sedimentación de sólidos; garantizándose la estabilidad y durabilidad del

pavimento proyectado.

- La señalización horizontal de la vía consiste en pintar el pase peatonal; flechas direccionales tipo I (frente y voltea); flechas direccionales tipo II (frente); flechas direccionales tipo III (frente y voltea ambos lados); línea de parada; línea central de parada; línea discontinua, las señales informativas consisten en el colocado del nombre de las calles en las paredes.
- El pavimento flexible es más propenso a la oxidación y debilitamiento por efectos de la humedad y factores climatológicos diversos, mientras que un pavimento rígido presenta durabilidad, mayor tiempo de serviciabilidad, por estas consideraciones técnicas se ha optado construir con pavimento rígido las vías arriba mencionadas.

3.5. Diseño de pavimento para infraestructura vial

Del componente infraestructura vehicular

De los estudios básicos para determinar el diseño utilizado el Método ASSTHO 93, se ha determinado Con el Pavimento rígido de Calzada con carpeta de concreto f´c = 245 kg/cm² y recapeo con carpeta asfáltica E=2.5", ancho variable (10 m a 9 m) y e= 0.10 m. (6,220.52 m2-446.61 ml) y e= 2.5" (3, 265.10 - 451.82 ml) respectivamente y Construcción de Veredas con losa de concreto f´c = 175 kg/cm²; E 10 cm acabado coloreado, Construcción de Cunetas Laterales Tipo I de concreto f´c = 175 kg/cm² y Tipo II de concreto f´c = 245 kg/cm² y Señalización en pavimento y sardineles; los habitantes del área de influencia directa e indirecta ya no estarán expuestos a sufrir accidentes de tránsito especialmente en temporadas de Iluvias; vía que se vuelve difíciles de transitar.

El servicio que será intervenido en el presente es la infraestructura vehicular, peatonal y obras complementarias; dicha ejecución del proyecto permitirá mejor la accesibilidad a las viviendas de las familias beneficiado con el ahorro de gastos de transporte urbano en las familias, costos de mantenimiento de las viviendas entre otros.

Del componente infraestructura peatonal

Construcción de 1,585.32 m² (1,557.19 ml) de veredas con losa de concreto f´c=175 kg/cm²n ancho variable (1.96 m a 3.00 m) y espesor de 0.10 m; acabado coloreado.

Componente obras complementarias

Construcción de 329. 15 m² cunetas laterales tipo I de concreto f´c=175 kg/cm² y 19.40 m² cunetas laterales tipo II de concreto f´c=245 kg/cm².

Señalización vial con pintura en sardineles 835.97 m² y en pavimento 710.29 m².

3.6. Costos y presupuesto

TABLA Na 12: Presupuesto base

	PRE	SUPUESTO BASE		
001	CONSTRUCCION DE CALZADA			1.140.992,50
002	CONSTRUCCION DE VEREDAS			224.312,06
003	CONSTRUCCION DE CUNETAS LATERALES		,	64.250,45
004	IMPLEMENTACION DE SEÑALIZACION			12.164,25
		(CD)	S/.	1.441.719,26
	COSTO DIRECTO		·	1.441.719,26
	GASTOS GENERALES (15.00%)			216.257,89
	SUPERVISION (3.40%)			49.018,45
	LIQUIDACION (1.80%)			25.950,95
	EXPEDIENTE TECNICO (4.30%)			61.993,93
	SEGUIMIENTO Y MONITOREO (0.35%)			5.046,02
	TOTAL_PRESUPUESTO			1.799.986,50
		Descompuesto del costo directo		
		MANO DE OBRA	S/.	189.237,08
		MATERIALES	S/.	881.496,27
		EQUIPOS	S/.	370.985,91
		Total descompuesto costo directo	S/.	1.441.719,26

Fuente: Elaboración propia

IV. DISCUSIÓN

- ✓ El estudio básico de ingeniería nos permite a determinar con mayor facilidad las necesidades y alternativas de nuestra propuesta adecuada según los parámetros establecidos.
- ✓ Para conformación de sub base, el material a usar según el CBR de valor bajo, se utiliza fragmentos gruesos y compactar con un buen grado. El cual permitirá una mejora en el suelo rasante.
- ✓ En el estudio de mecánica de suelos se debe afirmar los trabajos de campo los resultados obtenidos las muestras y se concluye que no existe dificultades mayores para ejecuta la pavimentación de vías.
- ✓ Se afirma los resultados de CBR en laboratorio de suelos, con el manual de diseño de caminos en respeta al espesor de losa de concreto.

CONCLUSIONES

OE1: Según el diagnóstico situacional llevada en campo, se ha determinado que el estado de la infraestructura vial, es deficiente por la pérdida de la calzada, veredas y obras complementarias, generando problemas en el tránsito vehicular y peatonal en toda la calle de jr. Sucre. La principal característica de la vía propuestas en el estudio como metas es construcción de calzada, construcción de veredas y construcción de obras complementarias:

OE2: Según los resultados se ha realizado el levantamiento topográfico siendo el resultado se tiene una longitud a intervenir es de 8,803.11 m2, se ha determinado que se tiene un pendiente negativo de 0.6X1000 con dirección de Sur a Nor-Este, observándose la misma topografía a lo largo de las vías de ciudad de la proyectada, en referente al pendiente se tiene un terreno con pendientes mayores de +5% haciendo el uso correcto de los equipos topográficos que se han utilizado con previo certificado de calibración.

- Según los resultados en estudio de tráfico vehicular de diferentes clases, se ha realizado el conteo de flujo vehicular en 03 lugares estratégicos de ambos sentidos, siendo un total de 36.510 de volumen vehicular, se ha proyectado un 2.00%. de tasa de crecimiento para automóviles, camioneta rural, para microbuses, ómnibus 1.50%. el punto pico se ha determinado en horas de la mañana y tarde, con el resultado obtenido se ha llegado a una conclusión que la infraestructura vial requiere un diseño de pavimento rígido por el volumen de tránsito vehicular y peatonal.
- Según los estudios de mecánica de suelo Los suelos de fundación están compuestos de arcillas de mediana plasticidad, arcillas de baja plasticidad, limos de baja plasticidad de tipo CL y algunas gravosas de tipo SP. El valor de CBR mínimo es de 11.10 %. Para ello para sub base se requiere hormigón y los agregados áridos de las canteras que cumplen los requisitos.

- OE3: Según los resultados de estudios básicos, el tipo de diseño por criterio técnico y manual de pavimentos aplicando método ASSTHO se ha determinado un diseño de pavimento rígido, con un espesor de 0.20m. de losa de concreto f´c=245 kg/cm² y para las veredas y cunetas con losa de concreto f´c = 175 kg/cm² con sus respectivas señalizaciones y sardineles
- OE4: Para el presente proyecto se ha estimado un presupuesto base de s/. 1.799.986,50 nuevos soles, estará sujeto a la actualización de oferta y demanda de los insumos.

RECOMENDACIONES

- ✓ Se recomienda durante la nivelación considerar el esponjamiento de la sub rasante y sub base.
- ✓ Se recomienda realizar reparación y mantenimiento de la red de agua y desagüe, con cuidado.
- ✓ Se recomienda usar un material grueso o fragmentos de rocas para conformación de sub base, de esta forma se mejora suelo rasante.
- ✓ Se recomienda compactar bien hasta 95 % de la máxima densidad en la conformación de la capa base granular.

REFERENCIAS BIBLIOGRÁFICAS

- Calla, E. (2015). Pavimentación de los jirones Achaya, Manco Capac, Conde de lumus, Arica y Puno de la municipalidad distrital de Caminaca Azángaro. Tesis pregrado. Universidad Nacional del Altiplano. Puno, Perú.
- Gaspar, R. (2010). Diseño del pavimento rígido del camino que conduce a la aldea El Guayabal, Municipio de Estanzuela del departamento de Zacapa Trabajo de graduación. Universidad de San Carlos de Guatemala.
- Mayta, J. (2019). Diseño de estructura de pavimento rígido para mejoramiento de principales vías de la UU.VV. pochoccota en la provincia de Andahuaylas región Apurímac. Tesis pregrado. Universidad nacional Federico Villareal, Lima.
- Mora, A. & Argüelles, C. (2015). Diseño y construcción de pavimento rígido para la urbanización Caballero y Góngora, municipio de Honda Tolima.

 Trabajo de grado. Universidad Católica de Colombia, Bogotá, Colombia.
- Ministerio de Transportes y Comunicaciones. (2014). *Diseño Geométrico* de *carreteras*. Lima, Perú.
- Ministerio de Transportes y Comunicaciones. (2016). Manual de puentes. Lima Perú.
- Ministerio de Transportes y Comunicaciones. (2011). *Manual de hidrología, hidráulica y drenaje.* Lima Perú.

ANEXOS

ANEXO 01: PANEL FOTOGRAFICO DEL LUGAR.

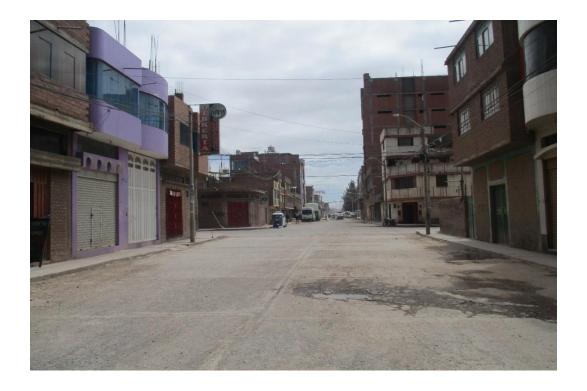


FOTO N° 01: EN LA FOTOGRAFÍA APRECIAMOS LA SITUACIÓN ACTUAL DE LA INTERSECCION JR. SUCRE - JR. MIRAFLORES, SE OBSERVA EL DETERIORO DEL PAVIMENTO EXISTENTE, POR LO QUE SE REQUIERE LA DEMOLICION DE PAVIMENTO, CONSTRUCCION DE CALZADA, VEREDAS Y CUNETAS PARA EVACUACION DE AGUAS PLUVIALES

FOTO N° 02: EN LA FOTOGRAFÍA APRECIAMOS LA SITUACIÓN ACTUAL DE LA INTERSECCION JR. SUCRE - JR. SAN AGUSTIN, SE OBSERVA QUE EL PAVIMENTO EXISTENTE HA SIDO CUBIERTO POR MASAS DE TIERRA, OCASIONANDO LA ACUMULACION DE LODO Y AGUA EN EPOCAS DE LLUVIA, DIFICULTANDO EL TRANSITO VEHICULAR Y PEATONAL, POR LO QUE SE REQUIERE EN FORMA URGENTE LA CONSTRUCCION DE CALZADA, VEREDAS Y CUNETAS PARA EVACUACION DE AGUAS PLUVIALES.

FOTO N° 03: EN LA FOTOGRAFÍA APRECIAMOS LA SITUACIÓN ACTUAL DE LA INTERSECCION JR. SUCRE - JR. JOSE CARLOS MARIATEGUI, SE OBSERVA EL MAL ESTADO DE LA CALZADA DERECHA DEL PAVIMENTO EXISTENTE, LA MISMA QUE DIFICULTA EL TRANSITO VEHICULAR, POR LO QUE SE REQUIERE LA CONSTRUCCION DE SU PROYECTO VIAL Y TODOS SUS COMPONENTES

ANEXO 02: PUNTOS TOPOGRAFICOS

DATOS DE COORDENADAS ABSOLUTAS:

PUNTOS	NORTE	ESTE	COTA	DESCRIPCION
5	8288118.26	380370	3832.72	BM 2
6	8288159.74	380521.28	3832.65	ESQ CUADRA
7	8288158.21	380524.03	3832.79	ESQ CUADRA
8	8288137.78	380531.38	3832.77	ESQ CUADRA
9	8288133.73	380557.59	3832.66	ESQ CUADRA
10	8288178.85	380578.81	3832.57	ESQ CUADRA
11	8288180.83	380580.79	3832.59	ESQ CUADRA
12	8288189.43	380604.13	3832.59	ESQ CUADRA
13	8288205.76	380608.69	3832.74	ESQ CUADRA
14	8288199.78	380591.42	3832.91	ESQ CUADRA
15	8288201.83	380589.63	3832.96	ESQ CUADRA
16	8288215.23	380595.77	3832.86	ESQ CUADRA
17	8288218.69	380570.35	3832.68	ESQ CUADRA
18	8288186.64	380555.44	3832.74	ESQ CUADRA
19	8288183.52	380550.55	3832.57	POST
20	8288168.37	380547.94	3832.33	POST
21	8288166.89	380536.37	3832.29	POST
22	8288145.25	380529.85	3832.57	POST
23	8288134.05	380531.61	3832.78	POST
24	8288136.02	380556.91	3832.59	POST
25	8288158.65	380567.54	3832.77	POST
26	8288178.68	380577.14	3832.61	POST
27	8288182.85	380582.54	3832.51	POST
28	8288184.24	380585.23	3832.39	POST
29	8288205.03	380566.05	3832.58	POST

30	8288148.3	380478.35	3832.63	PA
31	8288178.99	380534.93	3832.56	BM 1
32	8288179.1	380534.51	3832.57	ESQ CUADRA
33	8288180.09	380532.37	3832.57	ESQ CUADRA
34	8288211.78	380520.78	3832.63	ESQ CUADRA
35	8288215.76	380519.33	3832.59	ESQ CUADRA
36	8288208.5	380506	3832.6	ESQ CUADRA
37	8288205.69	380504.65	3832.59	ESQ CUADRA
38	8288199.66	380487.85	3832.59	ESQ CUADRA
39	8288193.66	380471.13	3832.59	ESQ CUADRA
40	8288194.84	380468.27	3832.62	ESQ CUADRA
41	8288193.43	380454.13	3832.92	ESQ CUADRA
42	8288157.08	380467.26	3832.57	ESQ CUADRA
43	8288154.4	380466.01	3832.58	ESQ CUADRA
44	8288149.76	380453.45	3832.59	PARED
45	8288142.21	380432.4	3832.59	ESQ CUADRA
46	8288138.56	380416.43	3832.66	ESQ CUADRA
47	8288136.11	380415.21	3832.6	ESQ CUADRA
48	8288123.06	380419.47	3832.59	ESQ CUADRA
49	8288122.22	380421.44	3832.61	ESQ CUADRA
50	8288129.15	380436.77	3832.58	ESQ CUADRA
51	8288135.3	380453.74	3832.72	PARED
52	8288141.29	380470.48	3832.6	ESQ CUADRA
53	8288139.93	380473.35	3832.57	ESQ CUADRA
54	8288123.49	380479.27	3832.56	PARED
55	8288127.01	380492.7	3832.58	PARED
56	8288144.81	380486.4	3832.71	ESQ CUADRA
57	8288147.26	380487.54	3832.6	ESQ CUADRA
58	8288153.4	380504.23	3832.75	PARED

59	8288177.75	380535.21	3832.56	BOR VED
60	8288183.83	380552.14	3832.57	BOR VED
61	8288179.05	380531.01	3832.56	BOR VED
62	8288183.8	380529.13	3832.57	BOR VED
63	8288182.63	380516.21	3832.63	POST
64	8288171.51	380517.5	3832.49	POST
65	8288183.09	380493.33	3832.42	POST
66	8288176.5	380473.58	3832.45	POST
67	8288159.96	380467.65	3832.53	POST
68	8288188.95	380457.44	3832.62	BOR VED
69	8288157.02	380468.73	3832.55	BOR VED
70	8288153.38	380467.06	3832.54	BOR VED
71	8288151.97	380463.18	3832.55	POST
72	8288141.75	380435.09	3832.55	POST
73	8288140.83	380431.85	3832.55	BOR VED
74	8288133.13	380443.59	3832.68	POST
75	8288133.06	380443.88	3832.74	BOR VED
76	8288136.56	380453.26	3832.72	BOR VED
77	8288142.86	380470.59	3832.56	BOR VED
78	8288140.96	380474.45	3832.56	BOR VED
79	8288124.04	380480.61	3832.53	BOR VED
80	8288127.38	380491	3832.59	BOR VED
81	8288136.84	380487.65	3832.54	BOR VED
82	8288144.66	380484.92	3832.94	BOR VED
83	8288148.3	380486.27	3832.49	BOR VED
84	8288149.33	380488.37	3832.51	POST
85	8288155.16	380504.05	3832.85	BOR VED
86	8288113.14	380380	3832.58	PA
87	8288143.24	380454.38	3832.66	EJE CALLE

88	8288125.18	380378.51	3832.61	ESQ CUADRA
89	8288134.58	380431.75	3832.63	EJE CALL
90	8288122.44	380371.19	3832.78	ESQ CUADRA
91	8288132.5	380425.75	3832.46	BUZ
92	8288105.4	380377.33	3832.78	ESQ CUADRA
93	8288123.73	380401.66	3832.62	EJE CALL
94	8288108.46	380385.02	3832.64	ESQ CUADRA
95	8288115.38	380377.75	3832.41	BUZ
96	8288091.39	380391.25	3832.71	PARED
97	8288088.66	380383.51	3832.71	PARED
98	8288107.02	380354.27	3832.62	EJE CALL
99	8288106.75	380374.72	3832.8	ESQ CUADRA
100	8288105.98	380336.66	3832.75	BOR VED
101	8288103.98	380367.12	3832.49	BOR VED
102	8288105.26	380366.51	3832.48	BOR VED
103	8288106.42	380332.49	3832.97	BOR VED
104	8288100.54	380357.67	3832.76	BOR VED
105	8288101.58	380357.2	3832.76	POST
106	8288098.73	380332.01	3832.77	BUZ
107	8288098.45	380347.77	3832.75	POST
108	8288094.51	380340.66	3832.77	ESQ CUADRA
109	8288092.07	380329.68	3832.72	POST
110	8288089.55	380326.59	3832.74	PARED
111	8288088.72	380288.2	3832.87	ESQ CUADRA
112	8288077.39	380293.31	3832.78	ESQ CUADRA
113	8288080.25	380282.61	3832.71	BUZ
114	8288073.65	380277.04	3832.55	BOR VED
115	8288080.34	380283.11	3832.75	PA
116	8288086.83	380296.68	3832.71	EJE CALL

117	8288092.33	380310.81	3832.76	EJE CALL
118	8288096.88	380327.47	3832.83	EJE CALL
119	8288102.92	380343.51	3832.83	EJE CALL
120	8288109.79	380359.94	3832.71	EJE CALL
121	8288113.29	380368.04	3832.58	EJE CALL
122	8288077.99	380282.67	3832.74	PA
123	8288099.39	380332.83	3832.79	EJE CALL
124	8288094.67	380320.8	3832.63	EJE CALL
125	8288090.74	380310.13	3832.74	EJE CALL
126	8288085.76	380297.26	3832.69	EJE CALL
127	8288092.63	380286.76	3832.73	POST
128	8288099.79	380285.71	3832.75	PARED
129	8288099	380284.35	3832.72	BOR VED
130	8288091.94	380273.15	3832.69	BOR VED
131	8288091.37	380271.77	3832.74	PARED
132	8288085.6	380275.32	3832.79	BOR VED
133	8288083.88	380274.88	3832.79	BOR VED
134	8288085.06	380273.94	3832.81	ESQ CUADRA
135	8288081.29	380267.05	3832.78	POST
136	8288082.41	380266.5	3832.79	PARED
137	8288077.07	380251.66	3832.8	PARED
138	8288075.75	380252.24	3832.77	BOR VED
139	8288071.57	380236.4	3832.8	ESQ CUADRA
140	8288070.22	380236.87	3832.79	BOR VED
141	8288071.49	380239.73	3832.77	POST
142	8288068.23	380220.55	3832.78	ESQ CUADRA
143	8288068.16	380222.11	3832.75	BOR VED
144	8288064.38	380220.26	3832.74	BOR VED
145	8288065.55	380219.2	3832.74	ESQ CUADRA

146	8288048.31	380212.51	3832.69	ESQ CUADRA
147	8288049.5	380211.92	3832.79	BOR VED
148	8288050.73	380214.69	3832.72	POST
149	8288049.96	380213.41	3832.77	POST
150	8288052.85	380220.99	3832.69	BOR VED
151	8288056.5	380231.24	3832.75	BOR VED
152	8288055.3	380231.78	3832.69	PARED
153	8288060.27	380241.98	3832.65	POST
154	8288066.99	380259.48	3832.92	POST
155	8288065.46	380260.01	3832.63	PARED
156	8288070.42	380270.17	3832.47	POST
157	8288070.83	380270.94	3832.49	BOR VED
158	8288071.54	380276.83	3832.47	ESQ CUADRA
159	8288072.9	380276.45	3832.44	BOR VED
160	8288070.87	380280.33	3832.46	BOR VED
161	8288070.36	380279.18	3832.46	ESQ CUADRA
162	8288060.39	380282.71	3832.45	PARED
163	8288057.81	380285.71	3832.82	POST
164	8288060.78	380295.26	3832.73	BOR VED
165	8288061.18	380296.45	3832.8	PARED
166	8288074.26	380290.85	3832.77	BOR VED
167	8288078.72	380292.93	3832.76	BOR VED
169	8288074.61	380292.05	3832.8	ESQ CUADRA
170	8288079.06	380274.95	3832.69	EJE CALL
171	8288076	380266.44	3832.87	EJE CALL
172	8288072.88	380257.45	3832.73	EJE CALL
173	8288069.33	380248.72	3832.82	EJE CALL
174	8288066.41	380239.77	3832.82	EJE CALL
175	8288062.7	380229.82	3832.74	EJE CALL

176	8288059.13	380221.57	3832.69	EJE CALL
177	8288049.75	380202.96	3832.69	PA
178	8288075.66	380233.32	3832.79	BOR VED
179	8288076.12	380234.64	3832.83	PARED
180	8288046.02	380211.35	3832.71	ESQ CUADRA
181	8288045.71	380210.15	3832.69	BOR VED
182	8288041.04	380211.41	3832.91	BOR VED
183	8288036.05	380202.08	3832.77	BOR VED
184	8288035.43	380200.6	3832.8	PARED
185	8288041.37	380198.41	3832.77	ESQ CUADRA
186	8288042.33	380195.99	3832.76	ESQ CUADRA
187	8288043.82	380195.48	3832.73	BOR VED
188	8288042.58	380199.59	3832.76	BOR VED
189	8288041.08	380187.99	3832.74	BOR VED
190	8288039.61	380188.35	3832.75	PARED
191	8288053.46	380185.93	3832.87	ESQ CUADRA
192	8288052.11	380186.36	3832.8	BOR VED
193	8288052.55	380182.26	3832.76	BOR VED
194	8288050.79	380177.11	3832.72	BOR VED
195	8288048.25	380175.54	3832.7	BOR VED
196	8288049.4	380174.58	3832.71	ESQ CUADRA
197	8288051.17	380175.6	3832.74	ESQ CUADRA
198	8288053.08	380176.25	3832.66	BOR VED
199	8288052.65	380175.12	3832.75	PARED
200	8288043.69	380163.19	3832.72	BOR VED
201	8288045.03	380162.54	3832.88	PARED
202	8288037.04	380143.82	3832.75	POST
203	8288037.03	380140.36	3832.89	ESQ CUADRA
204	8288035.64	380140.78	3832.84	BOR VED

205	8288020.72	380135.66	3832.81	ESQ CUADRA
206	8288022.13	380135.08	3832.8	BOR VED
207	8288024.92	380142.58	3832.87	POST
208	8288024.92	380143.74	3832.71	POST
209	8288029.62	380156.42	3832.74	BOR VED
210	8288028.34	380157.1	3832.74	PARED
211	8288038.18	380179.09	3833.17	POST
212	8288041.14	380187.98	3832.75	BOR VED
213	8288039.64	380188.37	3832.75	PARED
214	8288049.31	380193.79	3832.8	EJE CALL
215	8288045.24	380182.23	3832.79	EJE CALL
216	8288042.15	380173.62	3832.81	EJE CALL
217	8288038.92	380164.76	3832.71	EJE CALL
218	8288035.91	380156.51	3832.86	EJE CALL
219	8288033.62	380148.21	3832.92	EJE CALL
220	8288030.55	380139.97	3833	EJE CALL
221	8288025.9	380135.5	3832.77	PA
222	8288035.59	380137.91	3832.84	BOR VED
223	8288037.7	380135.87	3832.85	BOR VED
224	8288038.38	380137.59	3832.88	ESQ CUADRA
225	8288048.77	380133.84	3832.84	PARED
226	8288048.14	380132.05	3832.82	BOR VED
227	8288046.38	380124.1	3832.94	SARD
228	8288038.59	380126.94	3832.94	SARD
229	8288036.9	380122.36	3832.92	SARD
230	8288034.74	380128.11	3833	BOR VED
231	8288032.55	380126.4	3833.01	BOR VED
232	8288033.26	380123.78	3833.09	BOR VED
233	8288045.14	380119.33	3832.91	SARD

234	8288036.91	380122.35	3832.91	SARD
236	8288035.06	380114.41	3832.81	BOR VED
237	8288033.17	380113.12	3832.85	PARED
238	8288029.79	380114.27	3832.84	ESQ CUADRA
239	8288027.19	380113.07	3832.84	ESQ CUADRA
240	8288025.88	380113.46	3832.82	BOR VED
241	8288027.57	380115.81	3832.84	BOR VED
242	8288029.06	380116.32	3832.82	BOR VED
243	8288024.32	380109.22	3832.9	BOR VED
244	8288025.6	380108.73	3832.88	PARED
245	8288011.31	380068.65	3833.04	PARED
246	8288010.09	380069.26	3832.97	BOR VED
247	8288007.47	380061.7	3832.97	POST
248	8288008.33	380060.45	3832.9	PARED
249	8288006.92	380059.99	3832.88	BOR VED
250	8287996.14	380063	3832.93	BOR VED
251	8287994.58	380063.22	3833.02	PARED
252	8288004.08	380089.72	3832.78	PARED
253	8288005.46	380089.48	3832.98	POST
254	8288009.16	380099.45	3832.74	BOR VED
255	8288009.12	380098.74	3832.92	POST
256	8288007.54	380099.18	3832.74	PARED
257	8288013.13	380120.18	3832.84	ESQ CUADRA
258	8288014	380122.58	3832.8	BOR VED
259	8288015.65	380116.88	3833.03	BOR VED
260	8288014.01	380117.11	3832.91	ESQ CUADRA
261	8288008.6	380124.46	3832.81	BOR VED
262	8288007.86	380122.08	3832.84	PARED
263	8288013.6	380133.29	3832.81	BOR VED

264	8288017.35	380132.09	3832.8	BOR VED
265	8288019.32	380131.99	3832.8	BOR VED
266	8288022.12	380135.05	3832.76	BOR VED
267	8288018.33	380134.41	3832.85	ESQ CUADRA
268	8288033.66	380127.74	3833.01	BM 3
269	8288020.02	380119.49	3832.77	EJE CALL
270	8288022.89	380118.31	3832.76	EJE CALL
271	8288019.25	380115.95	3832.57	EJE CALL
272	8288021.5	380114.96	3832.57	EJE CALL
273	8288018.12	380108.07	3832.62	EJE CALL
274	8288015.29	380100.22	3832.62	EJE CALL
275	8288012.24	380091.5	3832.62	EJE CALL
276	8288009.12	380083.08	3832.64	EJE CALL
277	8288005.54	380072.77	3832.67	EJE CALL
278	8288002.38	380063.36	3832.69	EJE CALL
279	8287999.45	380055.85	3832.69	EJE CALL
280	8287996.92	380046.24	3832.68	EJE CALL
281	8287994.16	380038.01	3832.69	EJE CALL
282	8287991.83	380013.64	3832.68	PA
283	8287981.73	380027.35	3832.86	ESQ CUADRA
284	8287979.13	380025.94	3832.87	ESQ CUADRA
285	8287979.03	380024.57	3833.01	BOR VED
286	8287982.67	380026.36	3832.85	BOR VED
287	8287973.41	380027.94	3832.97	PARED
288	8287972.99	380026.5	3832.96	BOR VED
289	8287970.67	380017.98	3832.96	BOR VED
290	8287970.56	380016.45	3833	PARED
291	8287975.43	380014.71	3832.94	ESQ CUADRA
292	8287976.31	380012.59	3832.95	ESQ CUADRA

293	8287977.96	380012.58	3832.91	BOR VED
294	8287976.43	380015.88	3832.96	BOR VED
295	8287977.56	380011.48	3832.84	POST
296	8287971.99	379996.07	3832.87	BOR VED
297	8287970.61	379996.44	3832.89	PARED
298	8287967.27	379983.6	3833	POST
299	8287966.12	379983.94	3832.95	PARED
300	8287956.47	379957.25	3832.98	ESQ CUADRA
301	8287957.87	379956.72	3832.97	BOR VED
302	8287958.35	379958.67	3832.95	POST
303	8287969.58	379955.83	3832.98	BOR VED
304	8287970.78	379955.53	3832.98	ESQ CUADRA
305	8287979.6	379983.71	3832.85	BOR VED
306	8287980.91	379983.22	3832.92	PARED
307	8287988.12	380007.19	3832.96	POST
308	8287989.14	380010.23	3832.97	BOR VED
309	8287991.01	380011.07	3832.96	BOR VED
310	8287990.98	380009.07	3833	ESQ CUADRA
311	8287989.96	380008.6	3833	ESQ CUADRA
312	8287998.37	380008.43	3832.95	BOR VED
313	8287997.76	380006.61	3832.99	PARED
314	8288008.06	380057.61	3832.84	BOR VED
315	8288018.39	380052.74	3833.05	ESQ CUADRA
316	8288019.44	380053.98	3833	PARED
317	8287982.65	380009.18	3832.78	EJE CALL
318	8287979.97	379999.95	3832.76	EJE CALL
319	8287976.74	379990.92	3832.79	EJE CALL
320	8287969.09	379971.19	3832.82	EJE CALL
321	8287965.93	379962.33	3832.78	EJE CALL

322	8287960.52	379947.43	3832.82	BUZ
323	8287948.8	379931.77	3832.99	BOR VED
324	8287945.51	379926.71	3833.03	PARED
325	8287937.49	379903.99	3833.07	PARED
326	8287937.33	379899.88	3833.08	BOR VED
327	8287921.44	379859.45	3833.23	ESQ CUADRA
328	8287922.55	379859.03	3833.24	BOR VED
329	8287923.34	379861.54	3833.08	POST
330	8287924.27	379856.67	3833.06	PA
331	8287932.06	379868.88	3833	EJE CALL
332	8287934.86	379876.46	3832.97	EJE CALL
333	8287937.24	379883.08	3832.95	EJE CALL
334	8287940.25	379890.24	3832.91	EJE CALL
335	8287943.55	379898.7	3832.92	EJE CALL
336	8287950.38	379918.86	3832.91	EJE CALL
337	8287956.42	379936.2	3832.86	EJE CALL
338	8287962.59	379953.21	3832.77	EJE CALL
339	8287964.82	379959.22	3832.81	EJE CALL
340	8287967.69	379967.37	3832.8	EJE CALL
341	8287974.69	379986.94	3832.79	EJE CALL
342	8287978.26	379996.83	3832.74	EJE CALL
343	8287981.64	380006.38	3832.77	EJE CALL
344	8287985.66	380017.39	3832.75	BUZ
345	8287968.15	379951.69	3832.73	BOR VED
346	8287970.72	379950.56	3832.9	BOR VED
347	8287971.79	379952.9	3832.9	ESQ CUADRA
348	8287963.87	379939.91	3832.83	BOR VED
349	8287964	379936.64	3832.96	ESQ CUADRA
350	8287962.89	379937.01	3832.96	BOR VED

351	8287951.39	379904.67	3833.01	POST
352	8287952.56	379904.16	3833.01	PARED
353	8287950.52	379902.4	3833.02	BOR VED
354	8287943.05	379881.51	3833.04	BOR VED
355	8287944.13	379880.81	3833.04	PARED
356	8287935.41	379856.71	3833.21	ESQ CUADRA
357	8287936.44	379853.96	3833.22	ESQ CUADRA
358	8287935.98	379852.1	3833.2	BOR VED
359	8287933.95	379854.01	3833.19	BOR VED
360	8287934.19	379856.99	3833.19	BOR VED
361	8287932.51	379842.5	3833.19	BOR VED
362	8287930.25	379842.85	3833.19	BOR VED
363	8287928.43	379841.12	3833.19	BOR VED
364	8287929.6	379840.59	3833.2	ESQ CUADRA
365	8287930.74	379841.07	3833.2	ESQ CUADRA
366	8287926.62	379835.9	3833.27	POST
367	8287927.43	379834.75	3833.22	PARED
368	8287926.26	379835.09	3833.21	BOR VED
369	8287919.2	379815.77	3833.16	BOR VED
370	8287920.58	379815.16	3833.16	PARED
371	8287913.54	379795.6	3833.2	PARED
372	8287912.17	379796.27	3833.2	BOR VED
373	8287909.58	379789.23	3833.21	POST
374	8287894.64	379782.21	3833.28	POST
375	8287893.55	379782.4	3833.37	ESQ CUADRA
376	8287895.32	379783.66	3833.2	BOR VED
377	8287902.23	379805.98	3833.1	PARED
378	8287903.21	379805.54	3833.15	BOR VED
379	8287906.23	379814.37	3833.17	POST

380	8287910.61	379825.97	3833.14	BOR VED
381	8287910.07	379827.52	3833.14	PARED
382	8287915.99	379844.23	3833.22	ESQ CUADRA
383	8287914.95	379846.96	3833.22	ESQ CUADRA
384	8287915.12	379848.5	3833.19	BOR VED
385	8287917.37	379847.09	3833.19	BOR VED
386	8287917.11	379843.8	3833.19	BOR VED
387	8287907.49	379849.68	3833.26	BOR VED
388	8287907.92	379851.17	3833.2	BOR VED
389	8287915.8	379859.16	3833.17	BOR VED
390	8287916.56	379861.12	3833.25	PARED
391	8287921.34	379859.41	3833.24	ESQ CUADRA
392	8287922.66	379859.23	3833.24	BOR VED
393	8287920.92	379857.74	3833.23	BOR VED
394	8287918.79	379858.15	3833.21	BOR VED
395	8287925.26	379850.05	3833.01	EJE CALL
396	8287923.82	379844.98	3833.06	EJE CALL
397	8287920.87	379835.96	3833.05	EJE CALL
398	8287917.49	379827.67	3832.99	EJE CALL
399	8287913.97	379817.99	3833.03	EJE CALL
400	8287911.58	379810.81	3833.03	BUZ
401	8287908.09	379801.97	3833.04	EJE CALL
402	8287904.9	379793.03	3833.07	EJE CALL
403	8287901.82	379784.63	3833.07	EJE CALL
404	8287898.93	379776.63	3833.14	EJE CALL
405	8287901.85	379775.64	3833.17	EJE CALL
406	8287891.12	379781.06	3833.37	ESQ CUADRA
407	8287890.57	379779.64	3833.33	BOR VED
408	8287893.44	379779.82	3833.32	BOR VED

409	8287886.84	379770.18	3833.34	BOR VED	
410	8287886.47	379768.63	3833.37	ESQ CUADRA	
411	8287887.83	379766.33	3833.37	ESQ CUADRA	
412	8287888.79	379765.83	3833.3	BOR VED	
413	8287889.18	379768.35	3833.31	BOR VED	
415	8287881.76	379771.99	3833.32	BOR VED	
416	8287881.13	379770.57	3833.38	PARED	
417	8287885.85	379782.96	3833.35	PARED	
418	8287885.17	379781.54	3833.33	BOR VED	
419	8287904.24	379763.82	3833.3	BOR VED	
420	8287901.31	379764.09	3833.3	BOR VED	
421	8287899.39	379761.44	3833.28	BOR VED	
422	8287900.8	379761.47	3833.31	ESQ CUADRA	
423	8287902.69	379762.77	3833.32	ESQ CUADRA	
424	8287910.51	379761.6	3833.3	BOR VED	
425	8287907.88	379760.69	3833.34	PARED	
426	8287907.63	379773.27	3833.31	BOR VED	
427	8287905.16	379775.32	3833.34	BOR VED	
428	8287905.46	379778.03	3833.32	BOR VED	
429	8287906.81	379777.57	3833.36	ESQ CUADRA	
430	8287908.09	379774.98	3833.36	ESQ CUADRA	
431	8287914.4	379772.59	3833.36	PARED	
432	8287913.8	379770.97	3833.34	BOR VED	
433	8287896.94	379771.65	3833.18	BUZ	
434	8287883.65	379754.59	3833.2	BOR VED	
435	8287877.88	379735.74	3833.18	BOR VED	
436	8287876.7	379736.09	3833.18	PARED	
437	8287870.41	379718.95	3833.16	PARED	
438	8287871.56	379718.39	3833.14	BOR VED	

439	8287871.31	379718.09	3833.11	POST
440	8287862.21	379687.04	3833.15	PA
441	8287895.23	379766.33	3833.15	EJE CALL
442	8287891.58	379756.68	3833.05	EJE CALL
443	8287888.2	379747.55	3833.05	EJE CALL
444	8287884.6	379737.58	3833.04	EJE CALL
445	8287881.19	379728.04	3832.97	EJE CALL
446	8287877.29	379717.33	3832.99	EJE CALL
447	8287873.61	379707.28	3833.01	EJE CALL
448	8287870.87	379699.53	3833	EJE CALL
449	8287873.81	379687.26	3833.36	ESQ CUADRA
450	8287872.25	379688.31	3833.28	BOR VED
451	8287871.98	379685.39	3833.3	BOR VED
452	8287873.88	379682.99	3833.33	BOR VED
453	8287878.01	379684.03	3833.37	BOR VED
454	8287860.67	379692.31	3833.26	ESQ CUADRA
455	8287858.13	379691.36	3833.01	ESQ CUADRA
457	8287856.83	379689.05	3833.24	BOR VED
458	8287860.43	379689.2	3833.21	BOR VED
459	8287862.7	379691.8	3832.95	BOR VED
460	8287864.94	379682.6	3833.11	BUZ

ANEXO 03: GUIA DE OBSERVACION

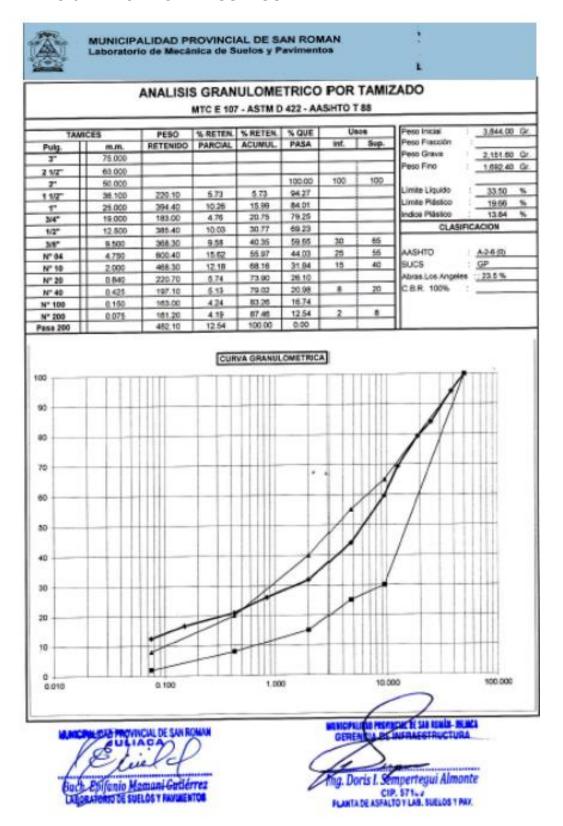
DISEÑO DE PAVIMENTO RIGIDO PARA INFRAESTRUCTURA VIAL JIRON SUCRE DE LA PROVINCIA SAN ROMAN DEPARTAMENTO DE PUNO 2021

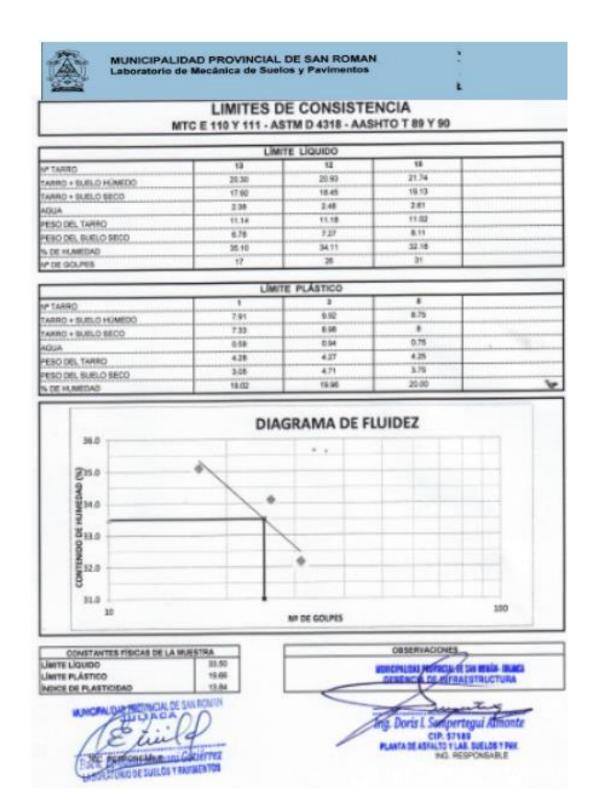
1) DATOS INFORMATIVOS

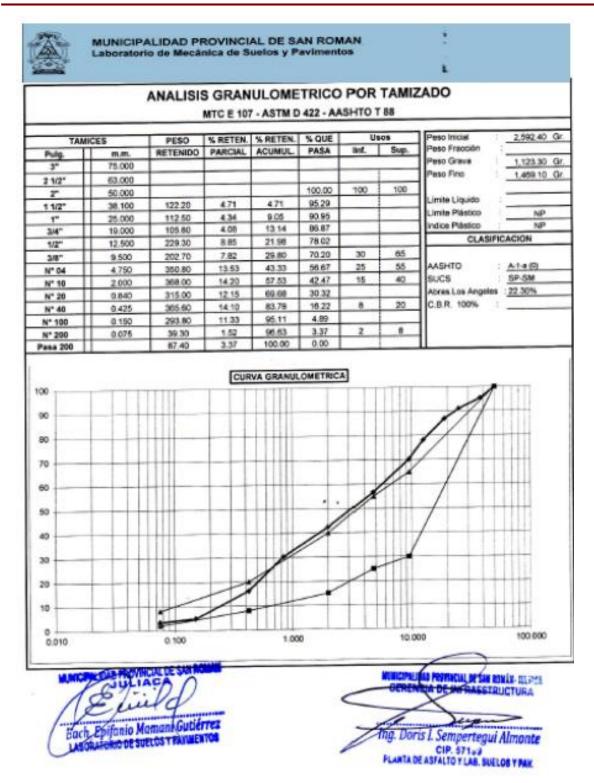
- Nombres y apellidos
 BASILIO P. MACHACA YUCRA
- 1.2. Ubicación:

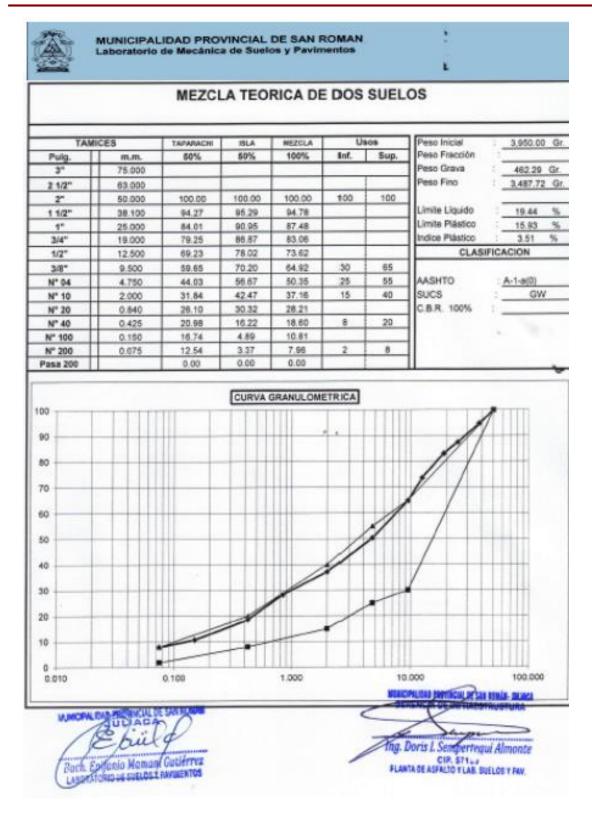
Jirón sucre del Distrito de Juliaca provincia de San Román, Región Puno.

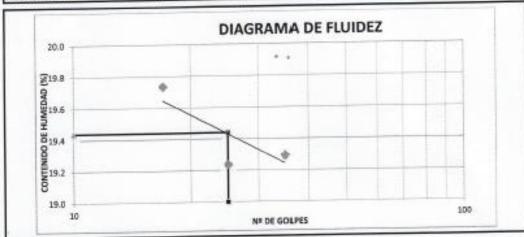
2) DATOS ESPECIFICOS


- 2.1. Tipo de pavimento de la infra estructura vial actual:
 - a) Pavimento flexible
 - b) Pavimento rígido
 - c) Pavimento mixto
- 2.2. Tipo de vehicular que transitan
 - a) Liviano
 - b) Pesado
 - c) Muy pesado
- 2.3. Tipo de deterioro
 - a) Fisuras
 - b) Hundimientos
 - c) Deformaciones
 - d) Otros
- 2.4. Nivel de deterioro de la via
 - a) ligero
 - b) Medio
 - c) fuerte
- 2.5. Condición de la vía
 - a) Bueno


- b) Regular
- c) Malo
- 2.6. Obstrucción de aguas superficiales en la vía
 - a) Mucho
 - b) Poco
 - c) Ninguno
- 2.7. ¿Qué efectos ocasiona a los vehículos?
 - a) Afecta a las suspensiones, golpeo
 - b) Accidentes
- 2.8. ¿Cuánto afecta los deterioros al tránsito vehicular?
 - a) Mucho
 - b) Poco
 - c) Ninguno
- 2.9. Causas de la vía
 - a) Falta de mantenimiento
 - b) Precipitaciones pluviales
 - c) Inestabilidad del suelo
 - d) Otros


ANEXO 04: MECANICA DE SUELOS





LIMITES DE CONSISTENCIA MTC E 110 Y 111 - ASTM D 4318 - AASHTO T 89 Y 90

	LÍMI	TE LÍQUIDO		
Nº TARRO		5	4	
***************************************	30.15	31.03	30.45	
TARRO + SUELO HÚMEDO	27.01	27.80	27.33	
TARRO + SUELO SECO	3.14	3.23	3.12	
AGUA	11.10	11.01	11,16	
PESO DEL TARRO	15,91	16,79	95.17	
PEBO DEL SUELO SECO	19.74	19.24	19.29	
% DE HUMEDAD Nº DE GOUPES	17	25	35	

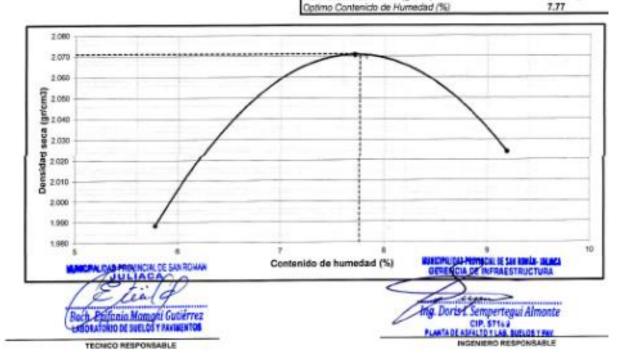
	LİMIT	E PLÁSTICO	
Nº TARRO	1	3	
TARRO + SUELO HÚMEDO	12.45	12.38	
TARRO + SUELO SECO	11.30	11.25	
AGUA	1.15	1.08	
PESO DEL TARRO	4.20	4:27	
PESO DEL SUELO SECO	7.02	6.98	
N DE HUMBDAD	16.38	15.47	

CONSTANTES FÍSICAS DE LA MUESTRA
LÍMITE LÍQUIDO 19.44
LÍMITE PLASTICO
INDICE DE PLASTICO INDICE DE PLASTICO 3.51

Bach, Epidalo Mamani Gutiérrez Chara Nels St. VIII STRAMENTOS OBSERVACIONES

#UNICIPALENS PRINTEDE DE SUI RUMB- RUMEA
GEREMETA DE SÉFERAE STRUCTURA

Ang. Doris E Sempertegui Almonte CIP. 57169 PLANTA DE ASPALTO Y LAB. SUELOS Y PAX. ING. RESPONSABLE



MUNICIPALIDAD PROVINCIAL DE SAN ROMAN Laboratorio de Mecánica de Suelos y Pavimentos

.

PROCTOR MODIFICADO MTC E 115 - ASTM D 1557

NUMERO DE ENSAYO Peso suelo + molde	g	10414.00	10682.00	10639.00	
Peso molde	0	5987.00	5987.00	5987.00	
Peso suelo húmedo compactado	9	4427.00	4695.00	4652.00	
Volumen del molde	cm ³	2104.90	2104.90	2104.90	
Peso volumétrico húmedo	0	2.103	2.231	2.210	
Recipiente N*		2	3	5	
Pese del suelo húmedo+tara	9	256.00	377.00	321.00	
Peso del suelo seco + tara	g	242.00	350.00	294.00	
Tara	. 0				
Peso de agua	9	14.00	27.00	27.00	
Peso del suelo seco	9	242.00	350.00	294.00	
Contenido de agua	%	5.79	7.71	9.18	
Peso volumétrico seco	gr/cm*	1,988	2.071	2.024	
			Mäxima Densidad S	2.071 🌤	

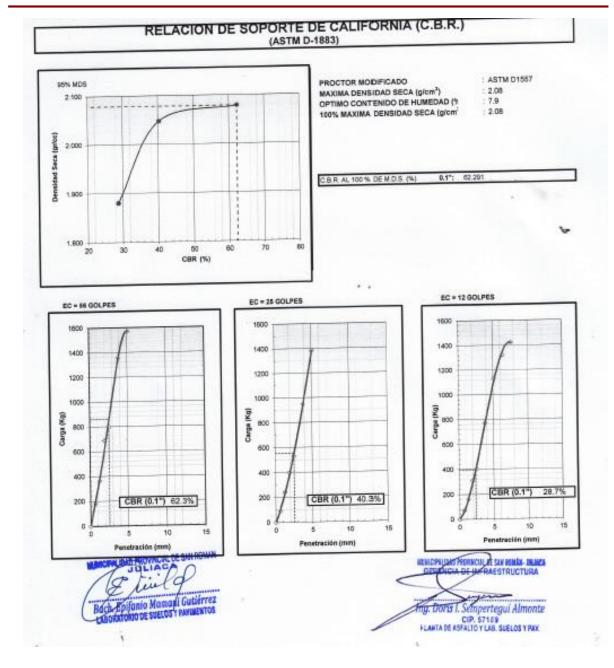
RELACION DE SOPORTE DE CALIFORNIA (C.B.R.) (ASTM D-1883)

		2	3
Molde N*	1	5	5
Capas Nº	5	25	12
Solpes por capa N*	56	40	0.000
ondición de la muestra	12710.00	11750.00	11480.00
eso de molde + Suelo húmedo (g)	11810.00	7185 00	7212.00
Peso de molde (g)	7090.00	4565.00	4268.00
eso del suelo húmedo (g)	4720.00	2069.00	2105.00
Volumen del molde (cm²)	2105.00	2.206	2.028
Densidad hûmeda (g/cm²)	2.242	2	3
Sea (N°)	1	612.00	564.00
Peso suelo húmedo + tara (g)	548.00	568.00	523.00
Peso suelo seco + tara (g)	508.00	20000	
Peso de tara (g)		44.00	41.00
Peso de agua (g)	40.00	568.00	523.00
Peso de suelo seco (g)	508.00	7,75	7.84
Contenido de humedad (%)	7.87	2.05	1.88
Densidad seca (g/cm ²)	2.079	200	

EXPANSION

				William A	INCHES	DIAL	EXPA	NSION	DIAL	EXPA:	
FECHA	HORA	TIEMPO	DIAL	_	NSION	DLAL	mm	%		mm	- %
	13000			mm	79	111111111111111111111111111111111111111	-				
				_							
			0.07	EWIO.	ANSIW	5					_
			8910.7	15,00 F.W	MASILA	-				-	-
		-								-	-
		-									

PENETRACION


				NE PER CIE	VI DES 44			N° DE G	OLPES 25		10000		DLPES 12	100000
		CARGA			JULES 30	menton	CAF		CORREC	CION	CAF	RGA	CORREC	CION
		STAND.	CAR	tGA	CORRE				ke	*	Dist (div)	kg	kg	76
mm	pulg	kg/cm2	Dial (div)	kg	kg	%	Dial (div)	kg	*4		A			
0.000	0		0	.0			0	0			16	71.3		
		-	46	180.9			22	93.2		1.				
0.635	0.025	-	96	363.5			63	243.0		-	41	162.6		
1.270	0.05		-				105	396.4		12-	82	312.4	2000	1
1.905	0.075		185	688.6	504.7	62.3	142	531.5	557.0	40.3	107	403.7	397.0	28.7
2.540	0.1	70,455	215	798.2	861.7	52.3	100000000000000000000000000000000000000	and the second second second		74.4	208	772.6		
3,810	0.15		367	1353.3			256	947.9		-	307	1134.2		-
	0.2		426	1568.8			375	1382.6				1324.1	_	
5.080		-									359		-	-
6.350	0.25		-	-	-						387	1426.4		
7.620	0.3				_	-	-							
10.160	0.4					-	-			-	-			
12.700	0.5	annual of	MAURIC U.S.							-	1		•	

GERENCIA DE INFRAESTRUCTURA

fing. Doris I. Sempertegui Almonte CIP. 57140 PLANTA DE ASFALTO Y LAB. SUELOS Y FAV.

ifanio Mamani Gutiérrez RIO DE SUECOS Y RANMENTOS

ITEM	DESCRIPCION			ENSAYOS		
1	Tamaño maximo (mm)	4.76	4.76	4.76	4.76	
2	Muestra Nº	1	2	3	4	
3	Hora de entrada	10:30	10:32	10:34	10:36	
4	Hora de salida	10:40	10:42	10:44	10:46	
5	Hora de entrada	10:42	10:44	10:46	10:48	
6	Hora de safida	11:02	11:04	11:06	11:08	
7	Altura maxima de material fino (Pig)	9.9	9.7	9.4	9.5	
8	Altura maxima de la arena (Pig)	4.1	3.8	3.6	3.7	
9	Equivalente de arene (%)	42	40	39	39	
10	Equivalente de arena promedio (%)	40 %				
11	Especificación	35 % Min.			HATTAN BORDACHI DE SAN B	and the last on

Both, Epifonio Maman Gutierrez

Ing. Doris I. Sempertegui Almonte CIP. 57189

PLANTA DE ASPALTO T ENG. SUBLOS Y PAY.

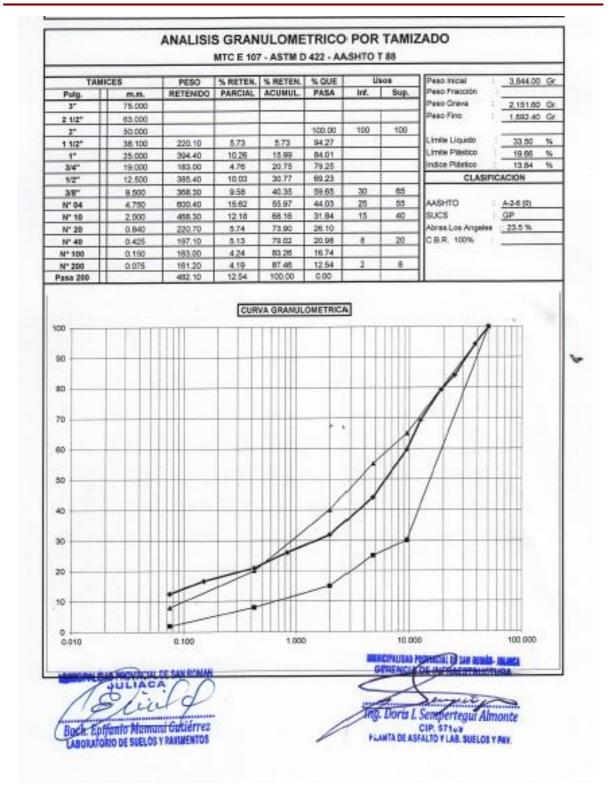
SALES SOLUBLES MTC E 219

FRACCION			PESO DE LA	LIQUIDO	VOLUMEN	2000	2.0
PASA	RETIENE	GRADACION ORIGINAL	FRACCION ENSAYADA (GR)	SOBREDENANTE ML	DE ENSAYO ML	PESO FINAL GM	CLORUROS
19.00 3/4"	6.35 N*4	100%	536	350	75	0.50	0.44%
FRA	CCION	000000000000000000000000000000000000000	PESO DE LA	LIQUIDO	VOLUMEN	59,240,427	•
FRA PASA	CCION	GRADACION ORIGINAL	PESO DE LA FRACCION ENSAYADA (GR)	LIQUIDO SOBREDENANTE ML	VOLUMEN DE ENSAYO ML	PESO FINAL GM	% SULFATOS

ABRASION LOS ANGELES MTC E 207 - ASTM C 131 - AASHTO T-96

MAL	RO LA					
		GRADACION	GRADACION	GRADACION	GRADACION	GRADACION
PASA	RET	"A" (12)	78" (11)	"C" (8)	70" (6)	-4.(13)
7	11/2"					
11/2"	1.		- 10-610000			
r.	34"		2500			
34"	10"		2500			
112"	38"					
38"	No 4					
No 4	No 10					
No 10	Mo 8					
TOTAL	GRS		5000			
PESO INICIAL			5000		-	
PESOMATI RET. EN MAL	LA No. 12		3850			
PESO MATI PASA EN MAL	LA No 12		1150			
PERDIDA			23.00%			. 855
PERDIDA PROMEDIO			23.00%			
ESFE	RAS					
PESO (gr.)	Nº					
	12	LIAGO ()			RENCIA DE INFRAESTRUCT	

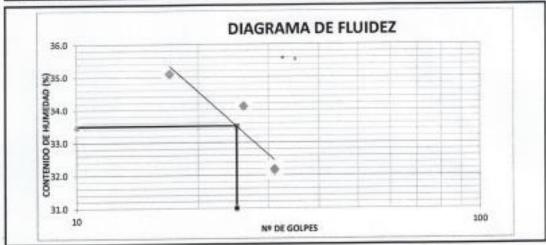
			c	HATAS	- ALAR	GADAS			
TANK	Pelg.	r	11/2"	1"	344"	107	34.	N-TOTAL	PESO
4	mm	50.8	23.1	25.4	19.05	12.7	9.525	+	TOTAL
PESO RETEMBO		-	-	79	136	125	102	432	2286
	% PESO RETEMBO		47	3,87%	8.87%	5,48%	4.47%	18,98%	
-	WACKINES N De Chese Awy		18.95%	м			RECIPIUSAS PER	MODILET SAN ESTE	



	RE	QUERIMIENTO GRANULOMETRICO PARA BASE												
		_	Porcentaje que Pasa											
Tamiz A B				1	roenae	C	re rasa		D		Tolerancia			
50.00 mm	(2")		100	2		100							- 3	
37.50 mm	(1 1/27)													+6 (2)
25.00 mm	(1")				7	5 -	95		100			100	3	+ 6
19.00 mm	(3/4")													+- 6
9.50 mm	(3/8")	30		65	40		75	50		85	60		100	+- 8
4.75 mm	(N° 4)	25		55	30		60	35		65	50		85	+ 8
2.00 mm	(N° 10)	15		40	20		45	25	~	50	40		70	+- 6
4.25 um	(N° 40)	8		20	15		30	15		30	25		45	+ 5
75 um	(N° 200)	2		8	5	200	15	5		15	8		15	+-4

SUB BASE GRANULAR REQUERIMIENTO DE ENSAYOS ESPECIALES

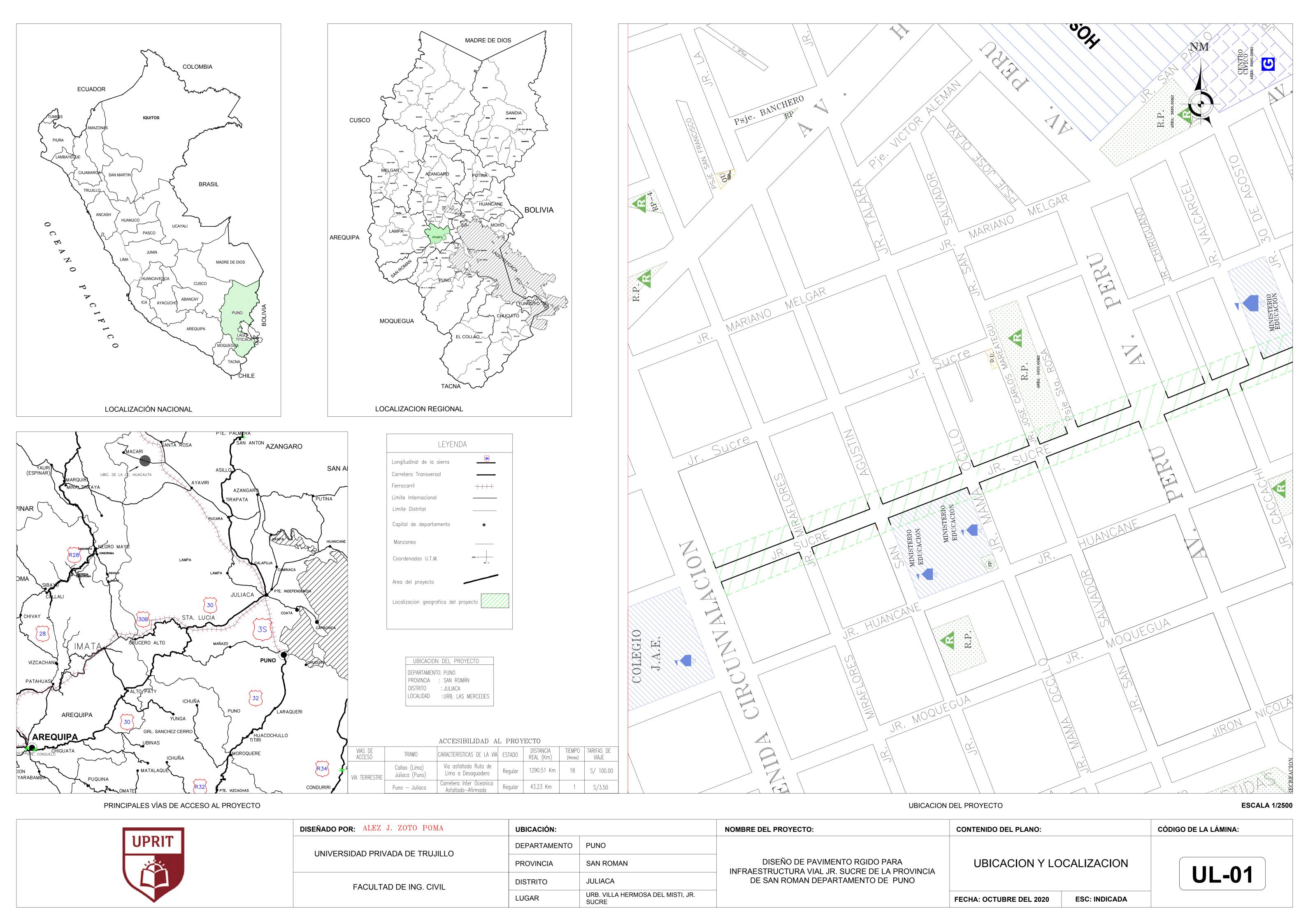
		REQUERIMIENTO
ENSAYO	NORMA	≥ 3000 msnm
CBR	MTC E 132	80% Min
AGREGADO GRUESO		
Particula 1 cara fracturada	MTC E 210	80% Min
Particulas 2 caras fracturadas	MTC E 210	50% Min
Abrasion	MTC E 207	40% Max.
Particulas chatas y Alargadas	1 1	15% Max.
Sales Solubles	MTC E 219	1% Max.
Durabilidad	MTC E 209	18% Max.
AGREGADO FINO		W. C.
Indice de Plasticidad	MTC E 111	2% Max.
Equivalente de arena	MTC E 114	45% Min
Sales Solubles	MTC E 219	1% Max.
Durabilidad	MTC E 209	15% Max.

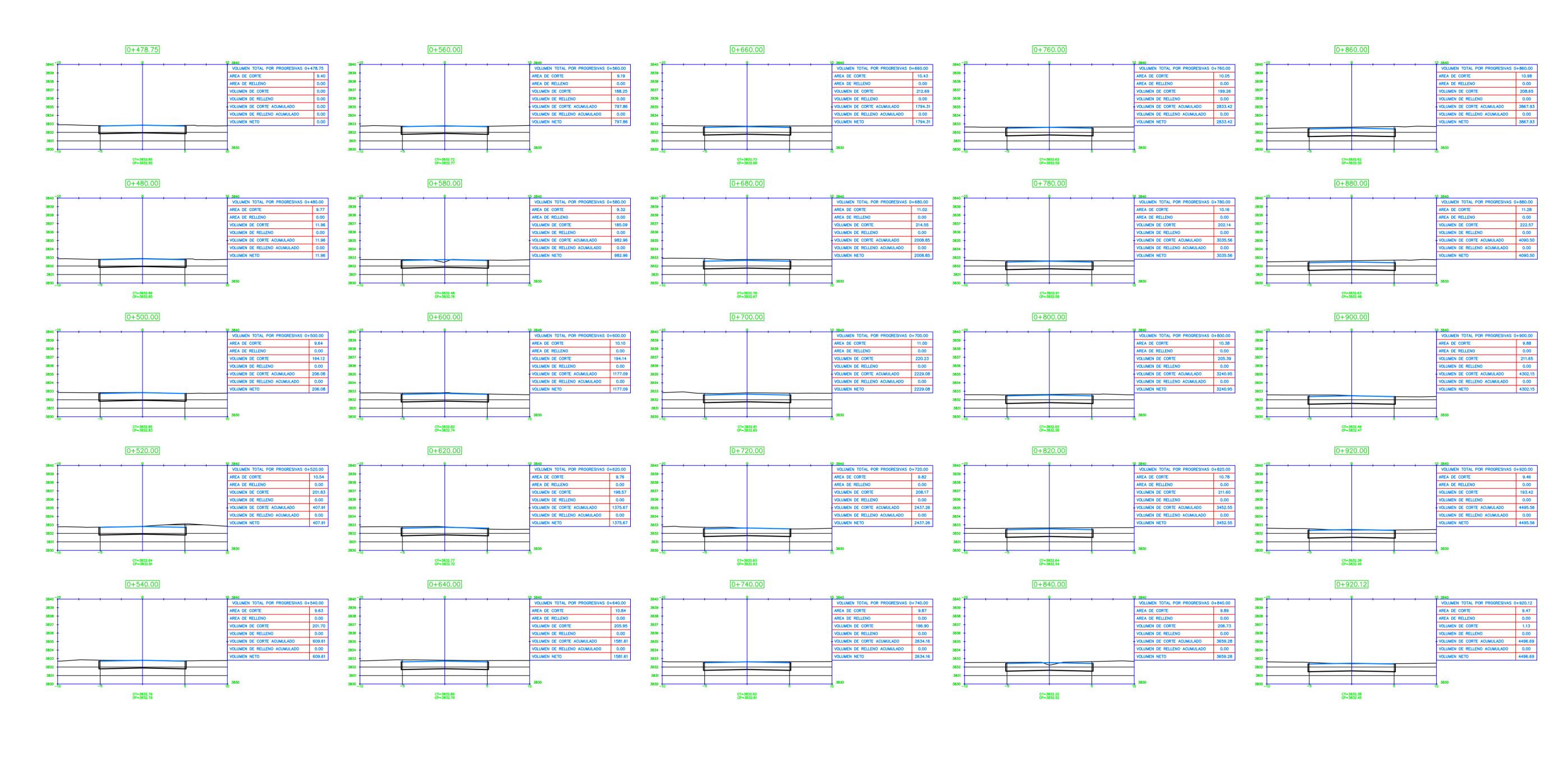


LIMITES DE CONSISTENCIA MTC E 110 Y 111 - ASTM D 4318 - AASHTO T 89 Y 90

LÎMITE LÎQUIDO								
Nº TARRO	13	12	15					
TARRO + SUELO HÚMEDO	20.30	20.93	21.74					
TARRO + SUELO SECO	17.92	18.45	19.13					
AGUA	2.38	2.48	2.61					
PESO DEL TARRO	11,14	11.18	11.02					
PESO DEL SUELO SECO	6.78	7.27	0.11					
% DE HUMEDAD	35.10	34.11	32.18					
Nº DE GOLPES	17	26	31					

LÍMITE PLÁSTICO								
NF TARSO	1	1	- 6					
TARRO + SUELO HÚMEDO	7.91	9.92	8.75					
TARRO + SUELO SECO	7.33	0.98	8					
AQUA	0.58	0.94	0.75					
PESO DEL TARRO	4.28	4.27	4.25					
PEBO DEL SUELO SECO	3.05	4.71	3.75					
% DE HUMEDAD	19.02	19.96	20.00	-				




CONSTANTES FÍSICAS DE LA MUE!	STRA
LIMITE LIQUIDO	33,50
LIMITE PLASTICO DE LA PROVINCIAL DE SA	oc1849
INDICE DE PLASTICICAD NOTAL DE SA	17.64

Epifania Mamdai Gutiérrez Iorafario de Suelos y Pavimentos thg. Doris I. Sempertegui Almonte CIP. 57143 MANTA DE ASFALTO Y LAR. SUELOS Y FAV.

ANEXO 05: PLANOS DE TOPOGRAFIA

Station	Fill Area	Cut Area	Fill Volume	Cut Volume	Cumulative Fill Vol	Cumulative Cut Vo
0+478.75	0.00	9.40	0.00	0.00	0.00	0.00
0+480.00	0.00	9.77	0.00	11.96	0.00	11.96
0+500.00	0.00	9.64	0.00	194.12	0.00	206.08
0+520.00	0.00	10.54	0.00	201.83	0.00	407.91
0+540.00	0.00	9.63	0.00	201.70	0.00	609.61
0+560.00	0.00	9.19	0.00	188.25	0.00	797.86
0+580.00	0.00	9.32	0.00	185.09	0.00	982.96
0+600.00	0.00	10.10	0.00	194.14	0.00	1177.09
0+620.00	0.00	9.76	0.00	198.57	0.00	1375.67
0+640.00	0.00	10.84	0.00	205.95	0.00	1581.61
0+660.00	0.00	10.43	0.00	212.69	0.00	1794.31
0+680.00	0.00	11.02	0.00	214.55	0.00	2008.85
0+700.00	0.00	11.00	0.00	220.23	0.00	2229.08
0+720.00	0.00	9.82	0.00	208.17	0.00	2437.26
0+740.00	0.00	9.87	0.00	196.90	0.00	2634.16
0+760.00	0.00	10.05	0.00	199.26	0.00	2833.42
0+780.00	0.00	10.16	0.00	202.14	0.00	3035.56
0+800.00	0.00	10.38	0.00	205.39	0.00	3240.95
0+820.00	0.00	10.78	0.00	211.60	0.00	3452.55
0+840.00	0.00	9.89	0.00	206.73	0.00	3659.28

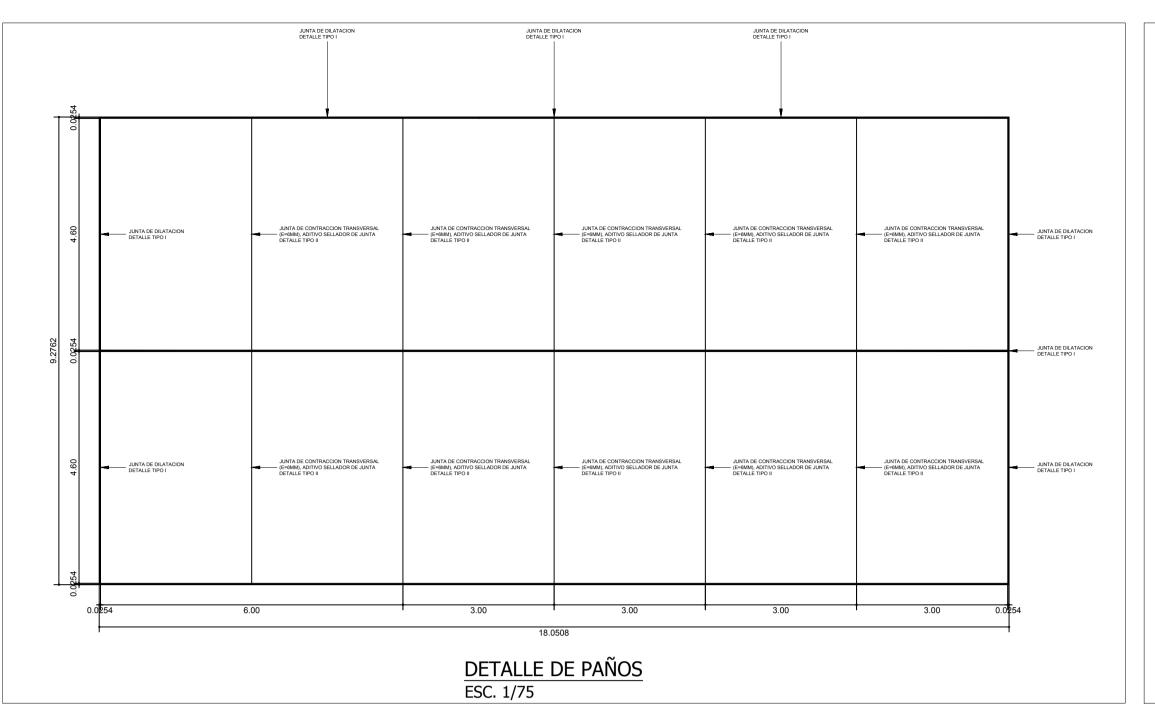
Total Volume Table								
Station	Fill Area	Cut Area	Fill Volume	Cut Volume	Cumulative Fill Vol	Cumulative Cut Vol		
0+860.00	0.00	10.98	0.00	208.65	0.00	3867.93		
0+880.00	0.00	11.28	0.00	222.57	0.00	4090.50		
0+900.00	0.00	9.88	0.00	211.65	0.00	4302.15		
0+920.00	0.00	9.46	0.00	193.42	0.00	4495.56		
0±920.12	0.00	9.47	0.00	1.13	0.00	4496 69		

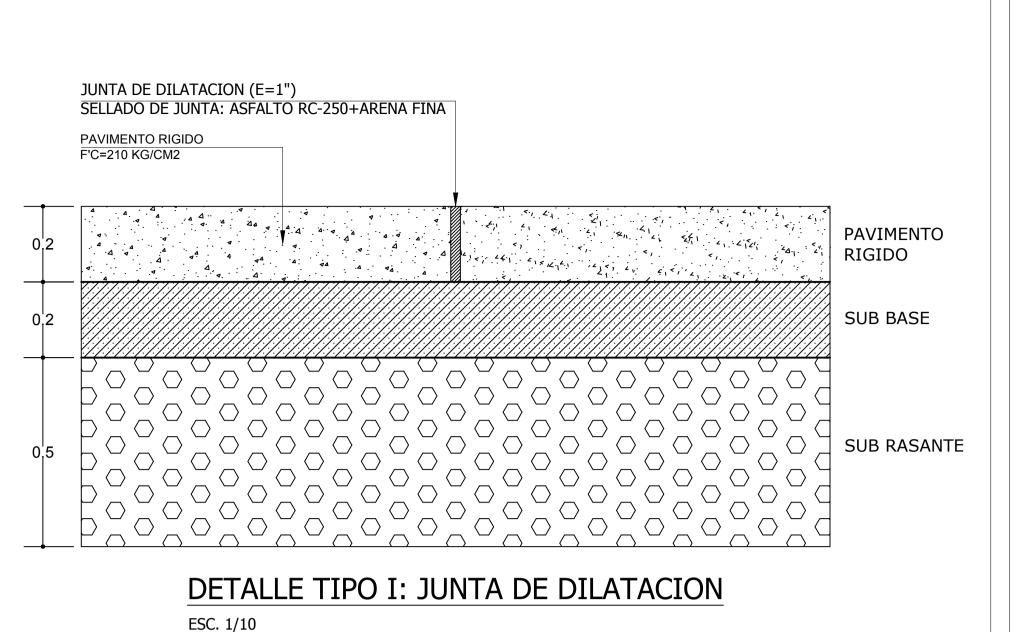
	UPRIT
-	

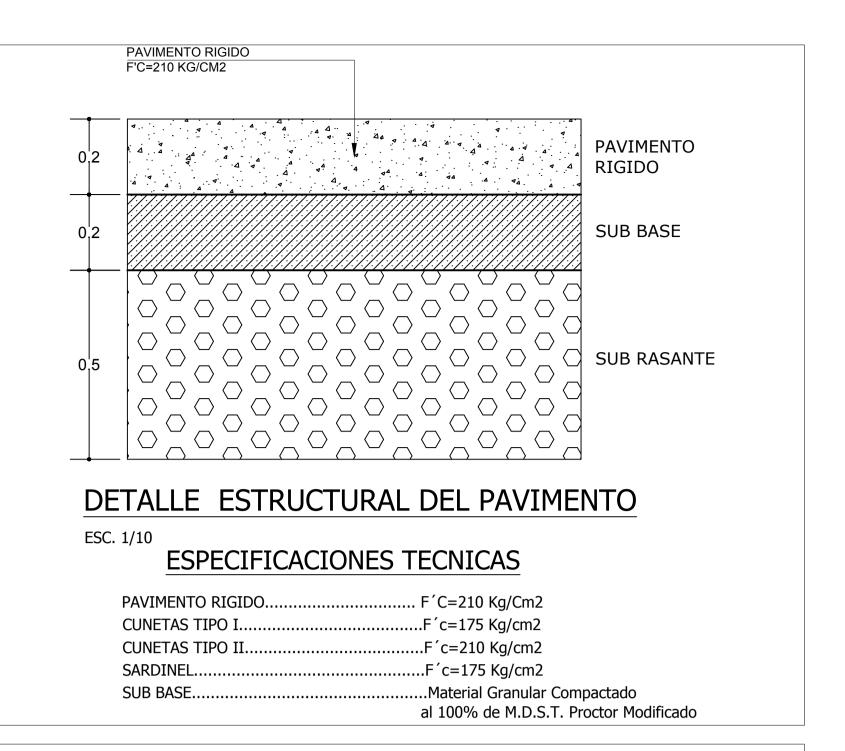
	UBICACION:	
UNIVERSIDAD PRIVADA DE TRUJILLO	DEPARTAMENTO	PUNO
UNIVERSIDAD PRIVADA DE TRUJILLO	PROVINCIA	SAN ROMAN
FACULTAD DE IG. CIVIL	DISTRITO	JULIACA
TACCETAD DE 10. CIVIE	LUGAR	URB. VILLA HERMOSA DEL MISTI, JR. SUCRE

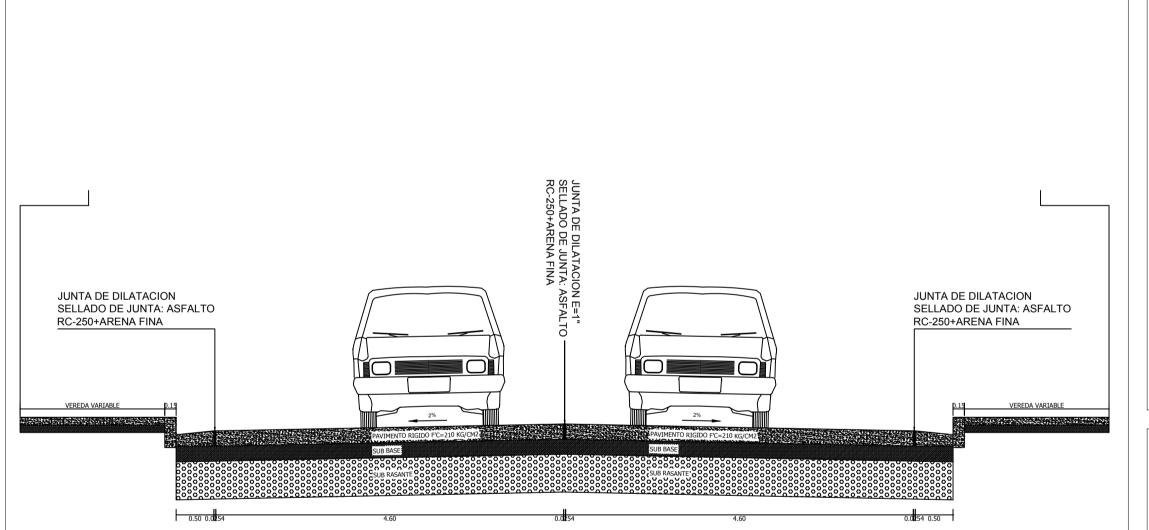
DISEÑO DE PAVIMENTO RIGIDO PARA INFRAESTRUCTURA VIAL JR. SUCRE DE LA PROVINCIA DE SAN ROMAN DEPARTAMENTO DE PUNO

NOMBRE DEL PROYECTO:

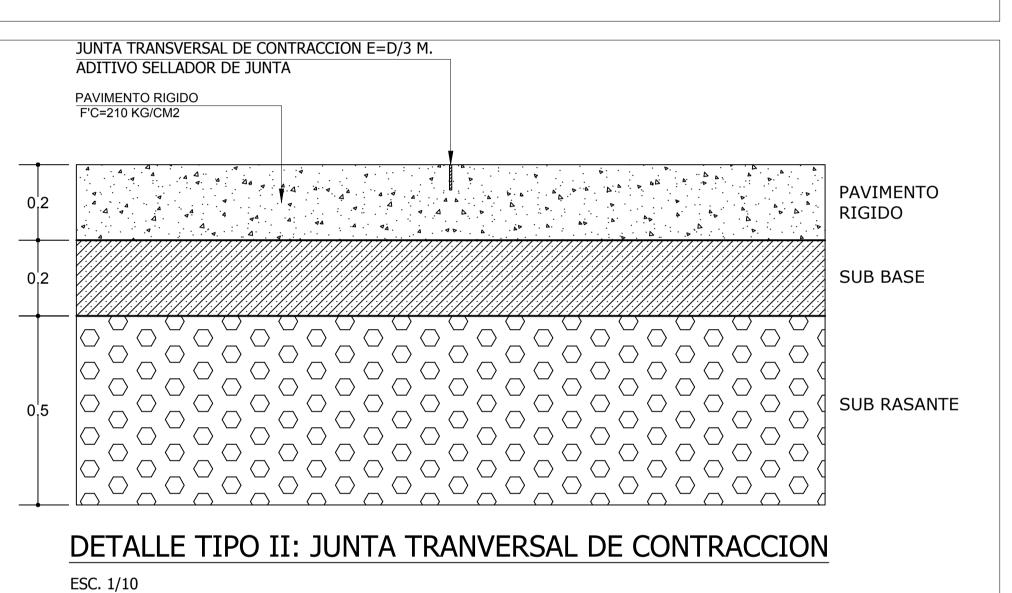

SECCION TRANSVE	ERSAL

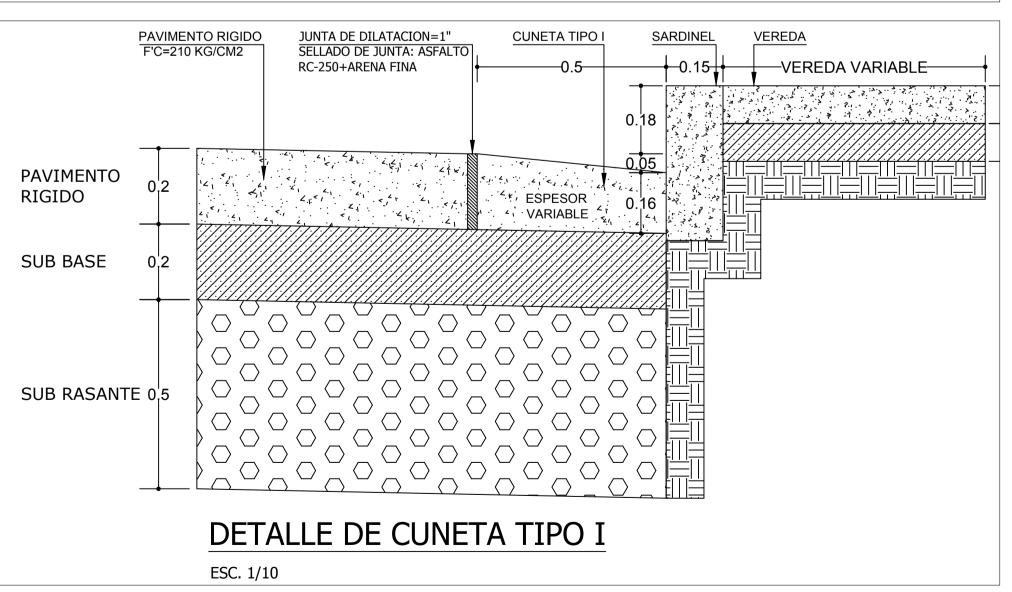

ST-04

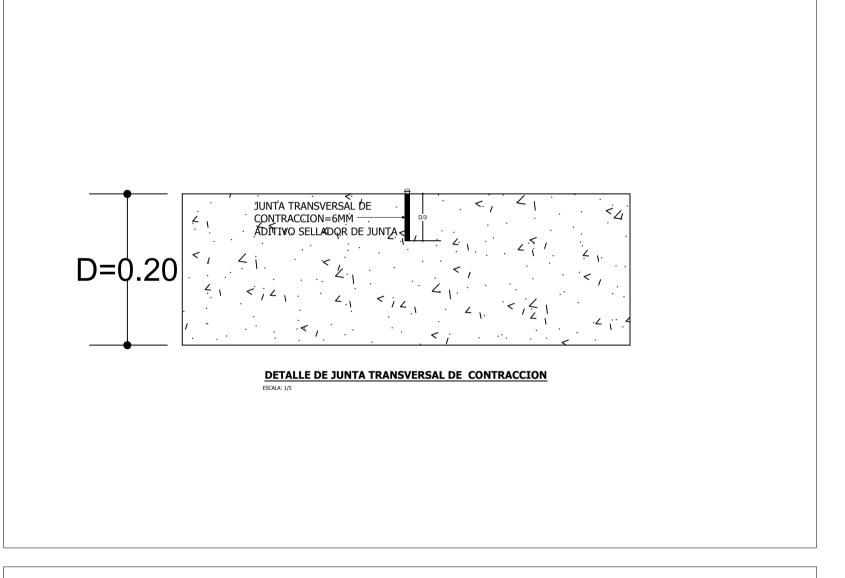

CODIGO DE LA LAMINA:

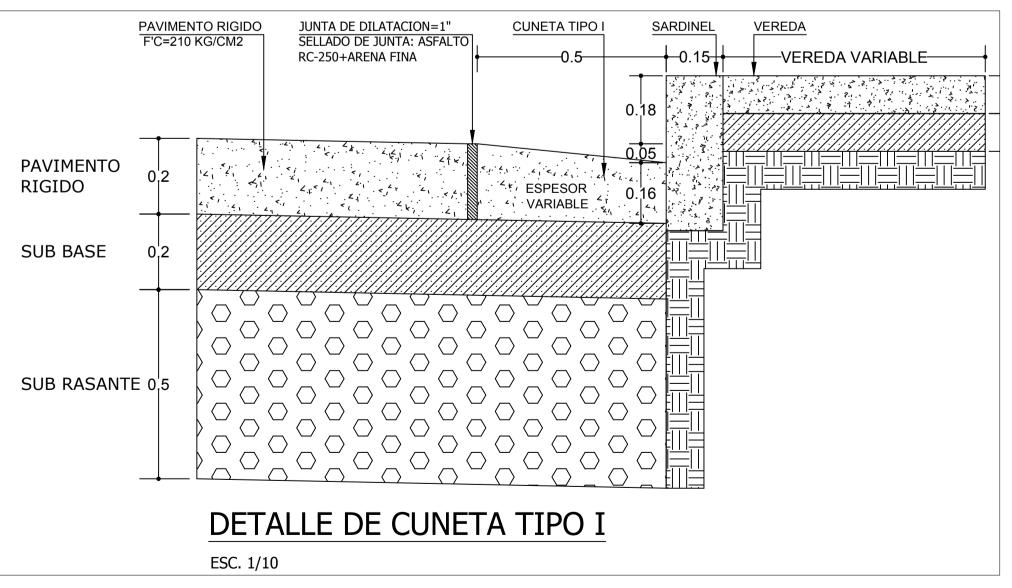

FECHA: OCTUBRE DEL 2020	ESC: 1/250

CONTENIDO DEL PLANO:

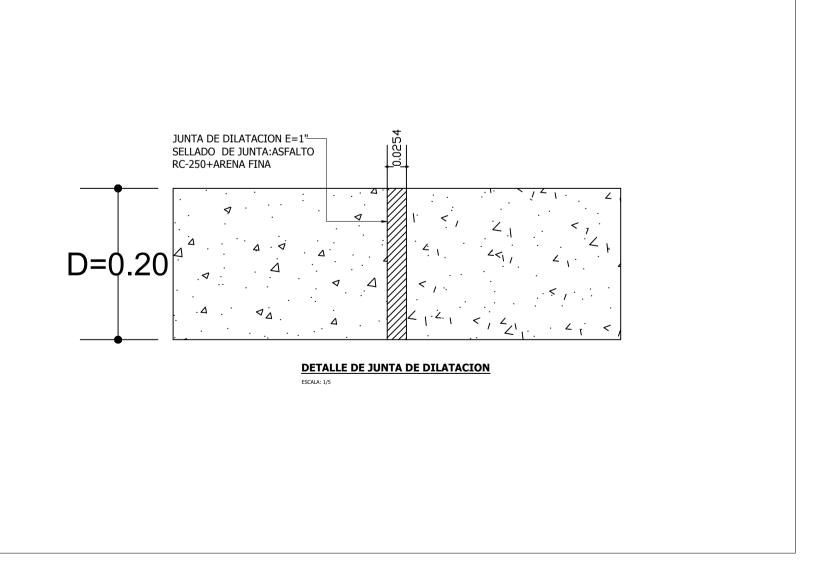


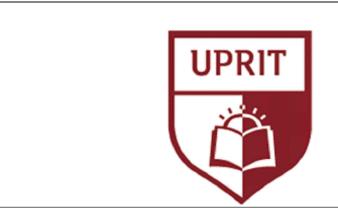






JR. LAMBAYEQUE TRAMO: AV. PERU - AV. TAMBOPATA ESC. 1/50

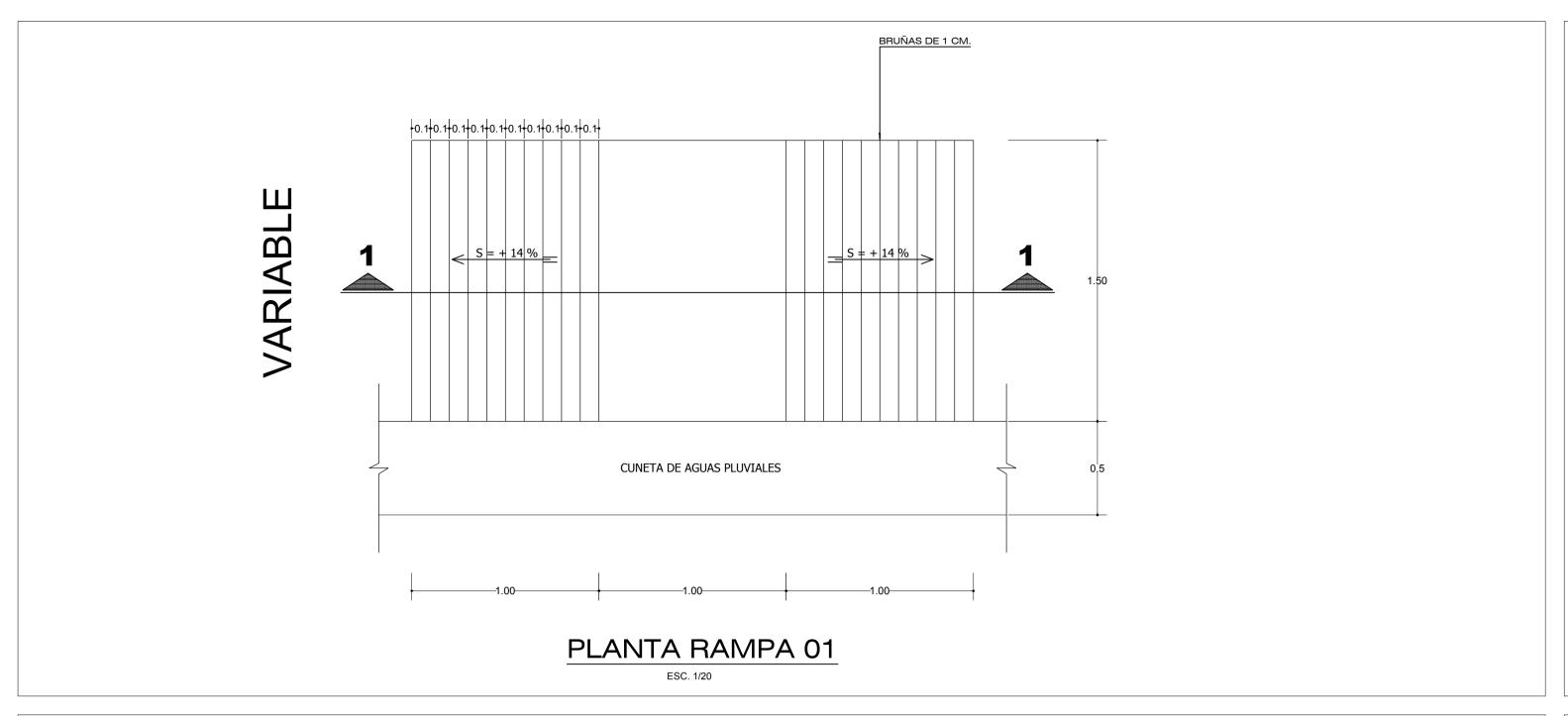


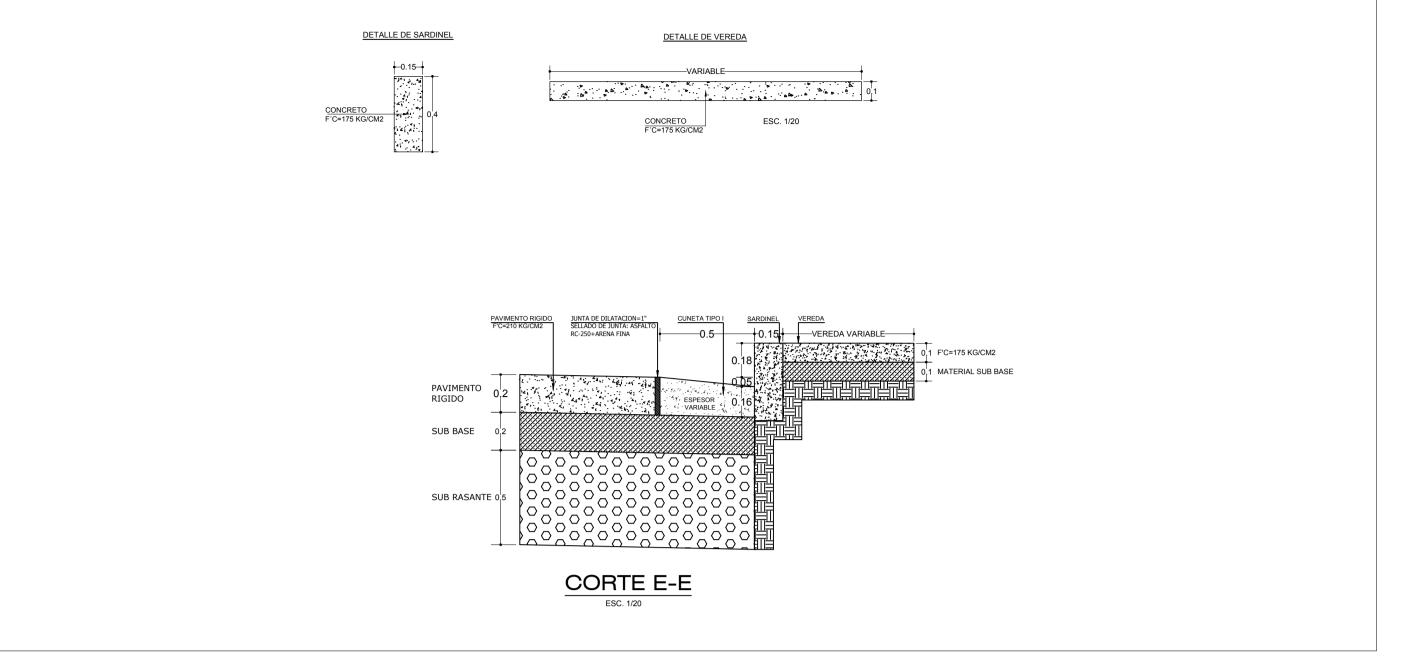


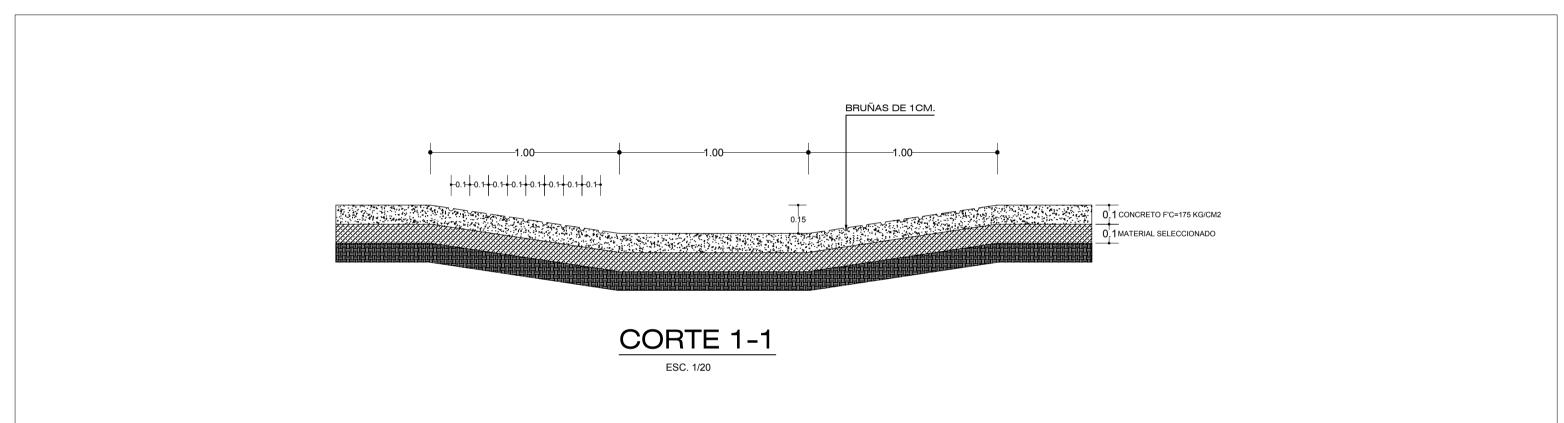
NOMBRE DEL PROYECTO:

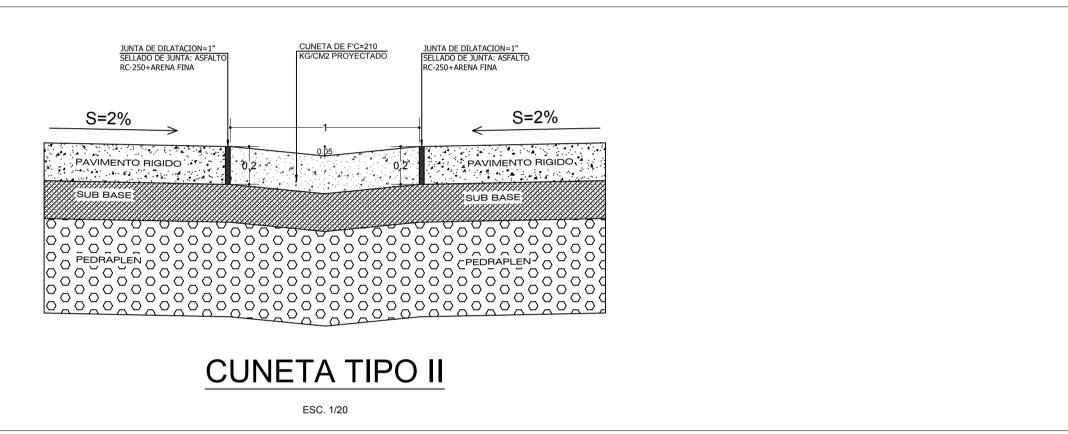
	UBICACION:		1
	DEPARTAMENTO	PUNO	
UNIVERSIDAD PRIADA DE TRUJILLO	PROVINCIA	SAN ROMAN	
FACULTAD DE ING. CIVIL	DISTRITO	JULIACA	
TAGGETAD DE ING. GIVIE	LUGAR	URB. VILLA HERMOSA DEL MISTI, JR. SUCRE	

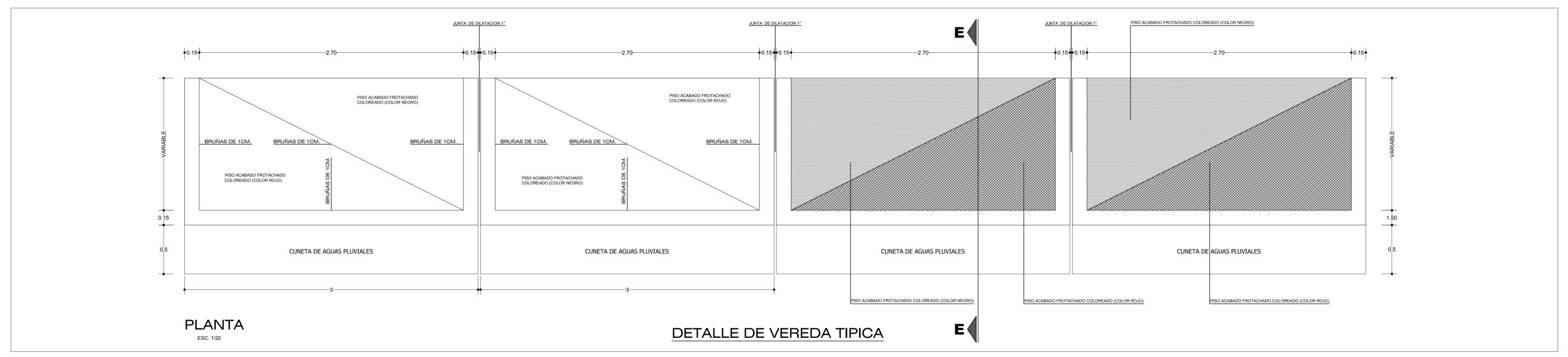
DISEÑO DE PAVIMENTO RIGIDO PARA INFRAESTRUCTURA VIAL JR. SUCRE DE LA PROVINCIA DE SAN ROMAN DEPARTAMENTO DE PUNO


DETALLE DE JUNTAS


J-01


CODIGO DE LA LAMINA:


ESC: INDICADA FECHA: OCTUBRE DEL 2020


CONTENIDO DEL PLANO:

	UBICACIÓN:		NOMBRE DEL PROYECTO:
	DEPARTAMENTO	PUNO	DISEÑO DE PA INFRAESTRUCTI PROVINC DEPARTA
UNIVERSIDAD PRIVADA DE TRUJILLO	PROVINCIA	SAN ROMAN	
FACULTAD DE ING. CIVIL	DISTRITO	JULIACA	
TAGGETAD DE ING. GIVIE	LUGAR	URB. VILLA HERMOSA DEL MISTI, JR. SUCRE	

DISEÑO DE PAVIMENTO RIGIDO PARA INFRAESTRUCTURA VIAL JR. SURE DE LA PROVINCIA DE SAN ROMAN DEPARTAMENTO DE PUNO

VEREDAS Y SARDINELES

JR. LAMBAYEQUE TRAMO (AV. CIRCUNVALACION - AV. TAMBOPATA)

ESC: INDICADA

CONTENIDO DEL PLANO:

FECHA: OCTUBRE DEL 2020

VS-01

CÓDIGO DE LA LÁMINA: